4.7 MULTIBUS II

Архитектура системы MULTIBUS II является процесорно-незави-

симой. Она отличается наличием 32-разрядной параллельной сис-

темной магистралью с максимальной скоростью передачи 40

Мбайт/с, недорогой последовательной системной магистрали и

быстродействующей локальной магистрали для доступа к отдельным

платам памяти. MULTIBUS II включает пять магистралей Intel: 1)

локального расширения (iLBX II), 2) многоканального доступа к

памяти, 3) параллельную системную (iPSB), 4) последовательную

системную (iSSB) и 5) параллельную расширения ввода-вывода

(iSBX).

Структура с несколькими магистралями имеет преимущества пе-

ред одномагистральной системой. В частности каждая магистраль

- 30 -

оптимизирована для выполнения определенных функций, а опера-

ции на них выполняются параллельно. Кроме того, магистрали, не

используемые в конкретной системе, могут быть исключены из ее

архитектуры, что избавляет от неоправданных затрат. Три ма-

гистрали из перечисленных кратко описаны ниже.

4.7.1 Параллельная системная магистраль iPSB.

Параллельная системная магистраль iPSB используется для

межпроцессорных пересылок данных и взаимосвязи процессоров.

Магистраль поддерживает пакетную передачу с максимальной пос-

тоянной скоростью 40 Мбайт/с.

Связной магистрали представляет собой плату, объединяющую

функциональную подсистему. Каждый связной магистрали должен

иметь средства передачи данных между МП 80386, его регистрами

межсоединений и магистралью iPSB. Магистраль iPSB представляет

каждому связному магистрали четыре пространства адресов: 1)

обычного ввода-вывода, 2) обычной памяти 3) пространство памя-

ти объемом до 255 адресов для передачи сообщений и 4) прост-

ранство межсоединений. Последнее обеспечивает графическую ад-

ресацию, при которой идентификация связного магистрали (платы)

осуществляется по номеру позиции, на которой установлена пла-

та. Поскольку МП 80386 имеет доступ только к пространствам па-

мяти или ввода-вывода, пространства сообщений и межсоединений

следует отображать на первые два пространства.

Операции на магистрали iPSB осуществляются посредством трех

циклов магистрали. Цикл арбитража определяет следующего вла-

- 31 -

дельца магистрали. Этот цикл состоит из двух фаз: фазы приня-

тия решения, на которой определяется приоритет для управления

магистралью, и фазы захвата, когда связной с наивысшим приори-

тетом начинает цикл пересылки.

Второй цикл магистрали iPSB - цикл пересылки, реализует пе-

ресылку данных между владельцем и другим связным. Третий цикл

iPSB - цикл исключения, указывает на возбуждение исключения в

течении цикла пересылки.

4.7.2 Магистраль локального расширения iLBX II

Магистраль локального расширения iLBX II является быстро-

действующей магистралью, предназначенной для быстрого доступа

к памяти, расположенной на отдельных платах. Одна магистраль

iLBX II поддерживает либо две процессорные подсистемы плюс че-

тыре подсистемы памяти, либо одну процессорную подсистему плюс

пять подсистем памяти. При необходимости иметь большой объем

памяти система MULTIBUS II может включать более одной магист-

рали iLBX II. В системе на базе МП 80386 с тактовой частотой

16 МГц типичный цикл доступа iLBX требует 6 циклов ожидания.

Для магистрали iLBX характерны 32-разрядная шина данных и

26-разрядная шина адресов. Поскольку эти шины разделены, воз-

никает возможность конвейерных операций в цикле пересылки. К

дополнительным особенностям магистрали iLBX относятся: 1) од-

нонаправленное подтверждение при быстрой пересылке данных, 2)

пространство межсоединений (для каждого связного магистрали),

через которое первичный запрашивающий связной инициализирует и

- 32 -

настраивает всех остальных связных магистрали, и 3) средство

взаимного исключения, позволяющее управлять многопортовой па-

мятью.

4.7.3 Последовательная магистраль iSSB

Относительно дешевая последовательная системная магистраль

iSSB может использоваться вместо параллельной системной ма-

 гистрали iPSB в тех случаях, когда не требуется высокая произ-

водительность последней. Магистраль iSSB может содержать до 32

связных магистрали, распределенных на длине максимум 10 м. Уп-

равление магистралью ведется с помощью стандартного протокола

множественного доступа с опросом несущей и разрешением конф-

ликтов (CSMA/CD). Связные магистрали используют этот протокол

для передачи данных по мере своей готовности. В случае однов-

ременного инициирования передачи двумя или несколькими связны-

ми вступает в действие алгоритм разрешения конфликтов обеспе-

чивающий справедливое предоставление доступа всем запрашиваю-

щим связным.


Информация о работе «Обзор процессоров и шин ПВМ начиная с 386 машин»
Раздел: Компьютерные науки
Количество знаков с пробелами: 82626
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
177455
0
22

... : -производитель чипсет, если возможно – модель материнской платы; -тактовые частоты процессора, памяти, системных шин; -названия, параметры работы всех системных и периферийных устройств; -расширенная информация о процессоре, памяти, жестких дисках, 3D-ускорителе; -разнообразные параметры программной среды: ОС, драйверы, процессы, системные файлы и т.д.; -информация о поддержке видеокартой ...

Скачать
94709
9
3

... привилегированных инструкций или операций, которые можно выполнять только при определенных уровнях CPL и IOPL (биты 13 и 14 регистра флагов). ГЛАВА 2 Архитектура 32-разрядных процессоров История 32-разрядных процессоров началась с процессора Intel386. Эти процессора вобрали в себя все свойства своих 16-разрядных предшественников 8086/88 и 80286 для обеспечения программной совместимости с ...

Скачать
19633
0
0

нальные компьютеры. Принцип работы кэш-памяти заключается в следующем. Процессор редко использует весь объем ОЗУ практически одновременно. Скакать из одного угла памяти в другой, периодически пошвыриваясь по всему ее объему – это не лучший способ использования ресурсов компьютера. Зачастую все обращения процессора к памяти сосредоточены в небольшой области (как показывает статистика – 5-10% от ...

0 комментариев


Наверх