5.1 Список переменных основной программы.
В основной программе используются раздел констант и типов:
const nm=20;
type vect1=array[1..nm] of real;
Следующие переменные так же используются в программе, которые описываются в разделе var:
Переменная | Тип переменной | Описание переменной |
С | matr | Матрица системы линейных уравнений для аппроксимации |
А | vect | Вектор коэфициентов аппроксимирующего многочлена по возрастанию степени (m+1 элементов) |
Х | vect1 | Вектор узлов аппроксимации |
B | vect | Вектор правых частей |
Y | vect1 | Вектор значений аппроксимирующей функции |
Z | vect | Вектор погрешности аппроксимации в узлах Х |
n | integer | Число узлов аппроксимации |
m | integer | Степень многочлена |
i | integer | Необходима для нумерации элементов массивов. |
j | integer | Необходима для нумерации элементов массивов. |
f1 | text | Файловая переменная для файла исходных значений |
f2 | text | Файловая переменная резуртирующего файла |
6.1 Заголовки процедур и функций. Список их переменных.
В своей программе я использовал следующие модули, которые описываются в операторе uses и процедуры:
Crt - стандартный модуль подключения экрана и клавиатуры для работы с программой.
Gauss - процедура решения системы линейных уравнений методом Гаусса. Она берется из модуля Gausstpu, где интерфейсная часть имеет вид:
Interface
Const nmax=20
Type
Поэтому при объявлении матрицы С ссылаться надо на matr, а векторов A и B на vect.
Create_BC - процедура расчета матрицы С (С - матрица системы линейных уравнений для аппроксимации). Заголовок этой процедуры выглядит так:
procedure Create_BC(n,m:integer; var x,y:vect1; var c:matr; var b:vect);
var i,j:integer;
r:vect;
А вот такие переменные используются только в этой процедуре, остальные засылаются из основной программы:
Переменная | Тип переменной | Описание переменной |
i | integer | Используются в циклах для перебора численных значений |
j | integer | Используются в циклах для перебора численных значений |
R | vect | Рабочий вектор |
7.1 Ручной счет.
Составляем матрицу системы уравнений по следующему принципу:
n | Sxi | Sxi2 | Syi |
Sxi | Sxi2 | Sxi3 | Sxiyi |
Sxi2 | Sxi3 | Sxi4 | Sxi2yi |
Для этого вычисляем необходимые значения:
n=10;
Sxi=1+6+0+3+8+2+12+9+2+5=48;
Sxi2=12+62+02+32+82+22+122+92+22+52=368;
Syi=9+4+13+7+3+9+3+1+4+2=55;
Sxi3=13+63+03+33+83+23+123+93+23+53=3354;
Sxiyi=1*9+6*4+0*13+3*7+8*3+2*9+12*3+9*1+2*4+5*2=159;
Sxi3=14+64+04+34+84+24+124+94+24+54=33428;
Sxi2yi=12*9+62*4+02*13+32*7+82*3+22*9+122*3+92*1+22*4+52*2=1023.
Получается следующая матрица:
10 | 48 | 368 | 55 |
48 | 368 | 3354 | 159 |
368 | 3354 | 33428 | 1023 |
Которая эквивалентна такой системе уравнений:
|
10a1 + 48a2 + 368a3 = 55
48a1 + 368a2 + 3354a3 = 159
368a1 + 3354a2 + 33428a3 = 1023
Мы решаем эту систему уравнений методом Гаусса:
10 | 48 | 368 | 55 |
0 | 137,6 | 1587,6 | -105 |
0 | 1587,6 | 19885,6 | -1001 |
10 | 48 | 368 | 55 |
0 | 137,6 | 1587,6 | -105 |
0 | 0 | 1568,203488 | 210.4680233 |
Получаем упрощенную систему уравнений:
|
1568,203488a3 = 210,4680233
137,6a2 + 1587,6a3 = -105
10a1 + 48a2 + 368a3 = 55
Решая которую получаем следующие окончательные значения, которые являются ответом:
|
a3=210,4680233/1568,203488=0,134209638
a2=(-105-1587,6 a3)/137,6=-2,311564115
a1=(55-48a2-368a3)/10=11,65659307
8.1 Обсуждение результатов с целью доказательства правильности алгоритма и программы.
Полученные результаты показывают, что алгоритм и программа составлены верно, так как значения полученные при ручном счете близки к машинным вычислением.
... [a,b]. Теперь мы можем рассматривать функции в произвольных нормированных пространствах. III. Методы аппроксимации 3.1 Приближение функций многочленами. Алгебраическим многочленом степени n называется функция - действительные числа, называемые коэффициентами. Алгебраические многочлены являются простейшими функциями. Они непрерывны при любом x. Производная многочлена- так же многочлен, степень ...
... u(x1, x2) в пяти точках сетки, а именно в точках (x1i, x2j), (x1i± 1, x2j), (x1i, x2 j± 1). Указанное множество точек называется шаблоном разностного оператора. Возможны разностные аппроксимации оператора Лапласа и на шаблонах, содержащих большее число точек. 2. Исследование аппроксимации и сходимости 2.1. Аппроксимация дифференциального уравнения. Ранее рассматривалась краевая задача (k(x) ...
... PRINT X, Y NEXT X END XC= 10 Х Y 1.3 -6.56 5.4 -3.77 9.5 -1.84 13.6 .1 17.7 2.29 21.8 4.31 25.9 5.86 30 8.82 34.1 11.33 38.2 11.27 S=-1.594203 АППРОКСИМАЦИЯ ФУНКЦИЕЙ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. В инженерной деятельности часто ...
... считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные. 3. Расчет коэффициентов аппроксимации в Microsoft Excel. Вариант №22 Функция y=f(x) задана таблицей 1 Таблица 1 Исходные данные. 12.85 154.77 9.65 81.43 7.74 55.86 5.02 24.98 1.86 3.91 12.32 145.59 9.63 80.97 7.32 ...
0 комментариев