9. Вместо заключения (или информация к размышлению)
В общем и целом, представленная работа это не только научная гипотеза но также поиск противоречий в очень перспективной концепции феноптоза академика Скулачева. Несмотря на своевременность, концепция феноптоза академика Скулачева страдает определенной механистичностью. В этой концепции цепь событий митоптоз - апоптоз - органоптоз предлагается дополнить еще одним этапом - запрограммированной смертью особи - феноптозом. Никто не будет оспаривать тот факт, что разрегулирование процессов апоптоза в организме млекопитающих может вызывать смерть. Но, увы, этот процесс нельзя считать инициальным субстратом старения многоклеточных организмов.
Концепция Скулачёва также предполагает, что в организме должен существовать некий механизм или даже орган противомонстровой защиты. С одной стороны подобный орган не обнаружен ни в одном живом существе, а с другой стороны существование подобного органа или механизма само собой предполагает резкое торможение скорости эволюции. Но данные современной биологической науки свидетельствуют об обратном - ускорение темпов эволюции органического мира от древних времен к современной эпохе.
Тем не менее, недавно в исследованиях Джанг (Jiang et al, 2001) установлен факт, что в гипоталамусе старых мышей повышен уровень экспрессии энзимов включенных в дыхательную цепь митохондрий по сравнению с таковым уровнем экспрессии у молодых мышей.
Экспрессия четырех субъединиц NADH-убихинон оксиредутазы, двух субъединиц цитохром - С- оксидазы, и трёх субъединиц ATP синтазы увеличивалась более чем в 2-раза. Высокие уровни экспрессии дыхательных белков митохондрий позволяют полагать, что с возрастом в гипоталамусе старых мышей возрастает продуцирование РФК. Так как подобные изменения не обнаружены в других частях коры головного мозга, то это позволяет предполагать, что различные ткани мозга имеют неравномерный темп старения. (Jiang et al, 2001)
А почему именно в гипоталамусе, а не в других частях мозга? Из элевационной теории В. Дильмана следует, что именно в гипоталамусе находятся те гормонсинтезирующие нейроны, у которых с возрастом изменяется порог чувствительности к уровню гормонов в крови, что и есть причиной старения или самоуничтожения, исходя из гипотезы автора.
О чем это может свидетельствовать?
Так как фактов практически нет никаких, то извольте, кроме фэнтези на биологическую тему ничего предложить не могу. А что если такой результат свидетельствует о том, что накопление РФК-индуцированных повреждений в мтДНК нейросекретирующих нейронов головного мозга функция регулируемая неким антимонстровым механизмом Скулачёва?
Как это может быть?
Если для простоты изложения использовать терминологический аппарат и понятия теории зародышевой плазмы Августа Вейсмана, то все события по прекращению функционирования организма млекопитающих происходят в клетках соматоплазмы. Но, повреждения генетической программы даже во всех клетках соматоплазмы не могут иметь существенного значения для сохранения и эволюционного прогресса популяции. Ухудшить генофонд популяции могут только мутации в клетках зародышевой плазмы организма. Поэтому процессы накопления ошибок мтДНК в пуле гормонсинтезирующих нейронов и накопления мутаций в клетках зародышевой плазмы организма неким образом связаны. Т.е. процесс (темп) накопления ошибок мтДНК в пуле гормонсинтезирующих нейронов мозга является функцией от суммы (темпа) накопления мутаций в клетках зародышевой плазмы организма. Это в свою очередь предполагает, что должны существовать хорошо регулируемые гормонами взаимодействия между зародышевой плазмой и соматоплазмой. Т.е. наличие с одной стороны гормональных факторов секретируемых зародышевой плазмой в кровоток, а с другой - наличие регулированного этим гормональным(и) факторам(и) внутриклеточного механизма определяющего темп накопления повреждений ядерной ДНК клеток зародышевой плазмы. Так сказать некий эрзац гормона смерти.
Трудно представить, что клетка, каким то образом может определить степень мутагенного повреждения собственного генома, и в ответ на эти повреждения секретировать некий гормональный фактор. Сие мнение находит подтверждение в ряде примеров. У человека кастраты не отличаются особым долголетием, они так же стареют и умирают подобно полноценным гражданам, и продолжительность их жизни укладывается в сроки предусмотренные Творцом. Поэтому видимо для антимонстрового механизма Скулачева ни для так называемых гормонов смерти в организме места нет. Нет, потому, что быть не может. Ну а почему именно в нейронах гипоталамуса высокий темп накопления ошибок мтДНК, необходимо разобраться. Возможно, что этот вопрос имеет ключевое значение.
Несмотря на вышеизложенное, автор остается при своем мнении. Кардинальное решение вопроса об увеличении продолжительности жизни лежит в плоскости нормализации нейрогенеза в постнатальном мозгу млекопитающих и человека. А практические результаты можно ожидать только после реанимации незаслуженно забытых исследований Оденса и Полежаева.
Эта публикация также претендует на роль иллюстрации одного гениального предвидения. Анализируя процесс старения, Розен предполагал, что система взаимодействующих элементов может потерпеть крах глобально, без краха любой входящей в неё субсистемы. (Rosen, 1978) Видимо, оно так и есть. Мы умираем молодыми.
Список литературыАлбертс, Б., Брей, Д., Льюис, Дж., Рэфф, М., Робертс., К., Уотсон, Дж. (1986) Молекулярная биология клетки. Москва "Мир" т.2 C. 237.
Белоус, А.М., Годин, В.П., Панков, Е.Я. (1974) Экзогенные нуклеиновые кислоты и восстановительные процессы. Москва: "Медицина".
Белоус, А.М. Экзогенная рибонуклеиновая кислота как фактор индукции в процессах регенерации костной ткани: Автореф. дис.... д-ра биол. наук. Харьков: Харьковск. гос. мед. ин-т, 31с.
Бойко, А.Г. (2000) Гипотетический метод преодоления барьера максимальной видовой продолжительности жизни млекопитающих и человека. В:3-й Національний конгрес геронтологів і геріатрів України. 26-28 вересня 2000 р. в м. Києві. Тези доповідей, C.170.
Гаврилов, Л.А., Гаврилова, Н.С. (1991) Биология продолжительности жизни. - Москва: "НАУКА" (2-е издание) С. 138-153.
Гродзинский, Д. М. (1986) Старение у растений. В: Надежность и элементарные события процессов старения биологических объектов. (сборник научных трудов) Киев "Наукова думка" C. 12-20.
Дильман, В.М. (1958) О возрастном повышении деятельности некоторых гипоталамических центров. В кн.: Труды Ин-та физиологии им. И.А.Павлова АН СССР. 7:326-336.
Дильман, В.М. (1987) Четыре модели медицины. Л.;"Медицина".- 288с.
Еськов, К. (2000) Наши отдаленные предки - зверозубые ящеры: гениальные неудачники. В мире животных 10: 8-11
Канунго, М. (1982) Биохимия старения. Москва: "Мир". - С. 245-251
Кокурина, Е. (2003) Интервью с академиком Скулачёвым. Российская научная газета от 17 сентября 2003 г., No 35 (38).
Конышев, В. А. (1969) О механизмах регуляции роста органов и тканей в эмбриогенезе. Успехи современной биологии. 68(3):412-433.
Маркс К., Энгельс Ф. Диалектика природы. Соч. 2-е изд. Т. 20. С. 620.
Мечников, И.И. (1989) Пессимизм и оптимизм. Москва:"Советская Россия" C.113.
Мухамедшин, К. (1968) Старейшие деревья в Средней Азии как объект дендрохронологических исследований В: Мат. Всесоюз. совещ. по дендрохронологии и дендроклиматологии. Вильнюс, стр. 104-111.
Полежаев, Л.В. (1968) Утрата и восстановление регенерационной способности у животных. Москва: "Наука" 248 стр.
Полежаев, Л.В., Резников, К.Ю. (1973) Стимуляция компенсаторно-восстановительных процессов в нервной ткани коры больших полушарий при гипоксемической гипоксии. Онтогенез. 4:145-153.
Полежаев Л.В. (1982) Природа нейротрофических явлений при регенерации и эксплантации. Успехи физиол. наук. 13(3): 31-55.
Полежаев Л.В. (1974). Регенерация и дедифференцировка. Арх. анатомии, гистологии и эмбриологии. 66(2): 102-114.]
Потапенко А. И., Акифьев А. П. (2003) На пути поиска программы и инициального субстрата старения. Медлайн РУ - Российский биомедицинский журнал. Свободный доступ!
Скулачёв, В.П. (1999) Феноптоз: запрограммированная смерть организма. Биохимия. 64(12):1418-1426.
Смирнов, А.В. (1988) Специфические эффекты и возможные механизмы действия экзогенных РНК. Успехи современной биологии. 106(вып. 1 N 4):20-36.
Соколов, В.Е. (ред) (1989) Жизнь животных. Москва "Просвещение"т.7..
Adams, J.M., Cory, S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science., 281(5381):1322-1326.
Alvarez-Buylla, A., Buskirk, D. R. and Nottebohm, F. (1987) Monoclonal antibody reveals radial glia in adult avian brain. J. Comp. Neurol. 264:159-170.
Alvarez-Buylla, A., Kirn, J. R. (1997) Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J. Neurobiol. 33:585-601.
Aschheim, P. (1976) Aging in the hypothalamic-hypophyseal-ovarian axis in the rat. In Hypothalamus, Pituitary and Aging. (ed. A. Everitt and J. A. Burges), pp. 376-418. Spring-field.
Barres, B. A. (1999) A new role for glia: generation of neurons! Cell. 97:667-670.
Barja, G. (1998) Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 854:224-38.
"Biological Growth and Development: AGING AND SENESCENCE: Life-span: ANIMALS: Maximum and average longevity. Table 4: Maximum Longevity of Animals in Captivity." Britannica CD, Version 98(c) 1994-1997. Encyclopaedia Britannica, Inc.
Bowles, J. (2000). Shattered: Medawar's test tubes and their enduring legacy of chaos. Med Hypotheses 54(2):326-39.
Boyko, O. G. (2002). Mammals die young!? Hypothetical age-dependent mechanism of self-destruction of mammals. Ukr. Bioorg. Acta, 1:1-13 Свободный доступ!
Brown, P.M. (1996) Oldlist: a database of maximum tree ages. In: Tree Rings, Environment and Humanity ( Eds J.S.Dean, D.M.Meko and T.W.Swetnam) P.727-731.
Bruce, S. A., Deamond, S. F., Ts'o, P. O. (1986) In vitro senescence of Syrian hamster mesenchymal cells of fetal to aged adult origin. Inverse relationship between in vivo donor age and in vitro proliferative capacity. Mech. Ageing Dev. 34:151-173.
Bruce, S. A., Deamond, S. F. (1991) Longitudinal study of in vivo wound repair and in vitro cellular senescence of dermal fibroblasts. Exp. Gerontol. 26:17-27.
Brunk, U. T., Terman, A. (2002) The mitochondrial-lysosomal axis theory of aging. Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. European Journal of Biochemistry 269(8):1996
Chambon, P. (1981) Split genes. Sci. Am. 244(5):60-71
Comfort, A. (1979) The Biology of senescence. Edinbourgh; London: Churchill Livins, - 414p.
Crick, F. (1979) Split genes and RNA spicing. Science. 204:264-271
Cristofalo, V. J., Beck, J. C. (1998) Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation. Proc. Natl. Acad. Sci. USA 95:10614-10619.
Cutler, R. G. (1980) Evolution of Human longevity. In: Ageing, cancer, and cell membranes. (Ed. C. Borek, C. M. Felongio and D. W. King), pp. 43-79. Stuttgart.
Darnell, J.E.Jr. (1982) Variety in the level of gene control in eucaryotic cells. Nature 297:365-371
Dilman, V. M. (1986) Ontogenetic model of ageing and disease formation and mechanisms of natural selection. J. Theor. Biol. 118(1):73-81.
Dilman, V. M. (1971) Age-associated elevation of hypothalamic, threshold to feedback control, and its role in development, ageine, and disease. Lancet. 1(7711):1211-1219.
Dilman, V. M. (1981) The lau of deviation of homeostasis and disease of aging. Boston: J. Wright PSG Inc. 380 pp.
Daniel, C. W., Aidells, B. D., Medina, D. Faulkin, L. J. Jr. (1975) Unlimited division potential of precancerous mouse mammary cells after spontaneous or carcinogen-induced transformation. Proc. F.A.S.E.B. 34:64-67.
Daniel, C. W., Young, J. T. (1971) Influence of cell division on an aging process. Expl. Cell Res. 65:27-32.
Deamond, S. F., Bruce, S. A. (1991) Age-related differences in promoter-induced extension of in vitro proliferative life span of Syrian hamster fibroblasts. Mech. Ageing Dev. 60:143-152.
Decary, S., Mouly, V., Benhamida, C., Sautet, A., Barbet, J.P., Butlerbrowne, G.S. (1997) Replicative Potential and Telomere Length in Human Skeletal-Muscle - Implications for Satellite CellMediated Gene-Therapy. Human gene therapy 8(12):1429-1438
Denckla, W. D. (1975) A time to die. Life Sci 16:31-44.
Denckla, W. D. (1978) Interactions between age and the neuroendocrine and immune systems. Fed. Proc. 37(5):1263-1267.
Denus, H., Lavroix, J.C. (1993) The dihotomy between germ line and somatic line, and the origin o sell mortality. Trends in genetics. 9:7-11
Finch, C.E, Tanzi, R.E. (1997) Genetics of Aging. Science 278:407-411
Finch, C. E. (1994). Longevity, Senescence, and the Genome. The University of Chicago Press. pp. 619
Finch, C.E., Austad, S.N. (2001) History and prospects: symposium on organisms with slow aging. Exp Gerontol. 36(4-6):593-597.
Economos, A. C. (1980) Brain-life-span conjecture: a revolution of evidence. Gerontology. 226:82-89.
Eltceiri, G.L. (1976) Some properties of the small homodisperse RNA4s in the cytoplasm of HeLa cells. Biochim. et biophys. Acta 425(2):202.
Erdmann, V.A., Barciszewska, M.Z., Hochberg, A., de Groot, N., Barciszewski, J. (2001) Regulatory RNAs. Cell Mol Life Sci 58(7):960-77
Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., Gage, F. H. (1998) Neurogenesis in the adult human hippocampus. Nat. Med. 4:1313-1317.
Gage, F.H. (2000) Mammalian Neural Stem Cells. Science. 287(5457):1433-1437
Goldman, S. A. (1998) Adult neurogenesis: from canaries to the clinic. J. Neurobiol. 36:267-286
Goldman, S., Nottbohm, F. (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc. Natl. Acad. Sci. USA. 80:2390-2394.
Goldstein, S., Moerman, E. J., Soeldner, J. S., Gleason, R. E., Barnett, D. M. (1978) Chronologic and physiologic age affect replicative life-span of fibroblasts from diabetic, prediabetic, and normal donors. Science. 199:781-782.
Goldsmith T. C. (2002) The Evolution of Aging. Web publication of this document provided by Azinet LLC Свободный доступ!
Gould, E., Vail, N., Wagers, M., Gross, C. G. (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc. Natl. Acad. Sci. USA, 98:10910-10917.
Gross, A., McDonnell, J.M., Korsmeyer, S.J. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 13(15):1899-1911.
Gruss, P., Lai, C.J., Dhar, R., Khoury, G. (1979) Spicing as a requirement for biogenesis of functional 16S mRNA of simian virus 40. Proc. Natl. Acad. Sci., USA. 76:4317-4321.
Hillman, N., Hillman, R. (1967) Competent chick ectoderm: non-specific response to RNA. Science, 155(3769):1563-1565
Jiang, C. H., Tsien, J. Z., Schultz, P. G., Hu, Y. (2001) The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc. Natl. Acad. Sci. USA, 98(4):1930-1934.
Johnson, F. B., Sinclar, D. A., Guarente, L. (1999) Molecular biology of aging. Cell. 96:291-302.
Kleene, K.C., Yumphreys, T.( 1977) Similarity of hnRNA sequences in blastula and pluteus stage sea urchin embryos. Cell. 12: 143-155.
Kushima, K., Kamio, K., Okuda, V. (1961) Climacterium, climacteric disturbanceson rejuvenation of sex center. Tohoku J. Exp. Med. 74:113-129.
Lerner, M.R., Steitz, J.A. (1981) Snurps and scyrps. Cell 25:298-300
Martin, G. M., Austad, S. N., and Johnson, T. E. (1996). Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13(1):25-34.
Medawar, P.B. (1952) An unsolved problem of biology. H.K.Lewis, London.
Morrison, J. H., Hof, P. R. (1997) Life and death of neurons in the aging brain. Science 278: 412-418.
Niu MC, Mulherkar L. (1970) The role of exogenous heart-RNA in development of the chick embryo cultivated in vitro. J Embryol Exp Morphol. 24(1):33-42.
Niu M.C. (1963) The stability of the RNA-induced cellular changes. Federat. Proc. 22(2): 354.
Niu M.C., Niu L.C., Guha A. (1968) The entrance of exogenous RNA into the mouse ascities cell. Proc.Soc. Exptl. Biol. and Med. 128(2):550-555
Odens, M. (1973). Prolongation of the life span in rats. J Am Geriatr Soc 21(10):450-451.
Ogburn, C. E., Carlberg, K., Ottinger, M. A, Holmes, D. J., Martin, G. M., Austad, S. N. (2001) Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. J. Gerontol. A Biol. Sci. Med. Sci. 56: 468-474.
Oh, C. K., Sanfey, H. A., Pelletier, S. J, Sawyer, R. G, McCullough, C. S., Pruett, T. L. (2000) Implication of advanced donor age on the outcome of liver transplantation. Clin Transplant. 14: 386-390.
Peculis, BA. (2000) RNA-binding proteins: if it looks like a sn(o)RNA... Curr Biol. 10(24):916-918.
Perry, R.P. (1981) RNA processing comes of age. J. Cell. Biol. 91:28-38
Polezhaev, L.V., Cherkavosa, L.V, Vitvitsky, V.N and Timonin, A. V. (1991) Normalisation of protein synthesis in dystrophic neurons of cerebral cortex in rats after hypoxia, opening of the blood brain barrier and treatment with organospecific RNA. J. Hironforsch., 32:51-54.
Rosen, R. (1978) Cells and senescence. Int. Rev. Cytology. 54:161-191
Rudman, D, Feller, A.G., Nagraj, H.S., Gergans, G.A., Lalitha, P.Y., Goldberg, A.F., Schlenker, R.A., Cohn, L., Rudman, I.W., Mattson, D.E. (1990) Effects of human growth hormone in men over 60 years old. N Engl J Med. 323(1):1-6.
Satz, M.L., Sztein, M.B., Serrate, S., Braun, M. (1980) Mechanisms of immune transfer by RNA extracts. Molecular & biological biochemistry, 33:105-113.
Saxer, G. A. (1977) Life table modification and life prolongation. In Handbook of the biology of aging. (ed. C. Finch and L. Hayflick), Reihold, New-York . USA, pp. 582-638.
Saxer, G.A. (1978) Longevity and aging in vertebrate evolution. Bioscience. 28:497-501.
Schweingruber, F.H. (1993) Trees and Wood in Dendrochronology. Berlin.
Segal, S.J., Davidson, O.W., Wada, K.(1965) Role of RNA in regulatory action of estrogen. Proc. Nat. Acad. Sci., U.S.A. 54(3):782
Slomski, R., Latos, A.M. (1979) Uptake of immune RNA by normal mouse spleen cells. Mol. and Cell Biochem. 24(1):15-20
[Smirnov, АV (1989) Mechanisms of reproduction by exogenous RNA of specific effects of biologically active substances] Farmakol Toksikol. 52(4):111-119. [Article in Russian]
Smirnov, A.V., Gancho, V.Iu., Ivanova, L.I. (1993) An analysis of the mechanism of the resistance to barbiturate action by using exogenous RNA] Biull Eksp Biol Med. 116(9):286-288 [Article in Russian]
Stebbing, N. (1979) Cellular uptake and in vivo fate of polynucleotides. Cell. Biol. Int Rep. 3(6): 485-502
Sterzl, J., Hrubesova, M. (1955) Ceskosl. biol. 4(10):606.
Stroun, M., Anker, P., Maurice, P. and Gahan, P. B. (1977) Circulating nucleic acids in higher organisms. Int. Rev. Cytol. 51:1-48
Suarez, R.K. (1992) Hummingbird flight: sustaining the highest mass-specific metabolic rates among vertebrates. Experientia 48(6):565-70
Villee, D. B., Goswami, A. (1973). Effects of exogenous RNA on steroid metabolism in adrenals and gonads. In: The role of RNA in Reproduction and Development. North-Holland Publishing Company; London. pp. 73-85
Weinberg, R.A., Penman, S. (1969) Metabolism of small molecular weight monodisperse nuclear RNA. Biochim. et biophys. acta. 190(1): 10.
Weismann, A. (1882) Ueber die Dauer des Lebens, Fischer, Jena.
Weismann, A. (1889) Essays upon heredity and kindred biological problems. Oxford: Claderon Press, UK
Wold, B.J., Klein, W.H., Hough-Evans, B.R., Britten, R.J., Davidson, E.H. (1978) Sea urchin embryo mRNA sequences expressed in the nuclear RNA of adult tissues. Cell. 14: 941-9
... И. Европоцентризм и русское национальное самосознание // Социологические исследования. 1996. № 2. С. 55–62. 24. Зиммель Г. Экскурс по проблеме: как возможно общество? // Вопросы социологии. 1993. Т. 2. № 3. С 16-26. 25. Иванов В.Н. Реформы и будущее России // Социологические исследования. 1996. № 3. С. 21-27. 26. Капусткина Е.В. Социальные реформы в России: история, современное ...
0 комментариев