2.1.3.1. Начальный этап метаболизма галактозы
Галактоза, поступающая в клетки, подвергается фосфорилированию при участии фермента галактокиназы:
В следующей реакции образовавшийся Гал-1-ф взаимодействует с УДФ-глюкозой с образованием УДФ-галактозы:
Реакция катализируется ферментом гексозо 1 фосфатуридилтрансферазой.
Далее УДФ-галактоза изомеризуется в УДФ-глюкозу при участии фермента эпимеразы:
Затем при взаимодействии с следующей молекулой Гал-1-ф образовавшийся в составе УДФ-глюкозы глюкозный остаток выделяется в виде глюкозо-1-фосфата. Гл-1-ф изомеризуется при участии фосфоглюкомутазы в гл-6-фосфат и включается в общий путь окисления глюкозы.
2.1.3.2. Начальный этап метаболизма фруктозы
Фруктоза также после поступления в клетки подвергается фосфорилированию с использованием в качестве фосфорилирующего агента АТФ. Реакция катализируется ферментом фруктокиназай. Образовавшийся Фр-1-ф расщепляется на глицериновый альдегид и фосфогидроксиацетон ( ФГА ) при участии фермента фруктозо-1-фосфатальдолазы . Глицериновый альдегид при участии фермента триозокиназы превращается в 3-фосфоглицериновый альдегид, в ходе фосфорилирования используется молекула АТФ, переходящая в АДФ. Фосфогидроксиацетон при участии триозофосфатизомеразы также превращается в 3-фосфоглицериновый альдегид. Таким образом, из молекулы фруктозы получается 2 молекулы 3-фосфоглицеринового альдегида, а 3-ФГА является промежуточным метаболитом окислительного расщепления глюкозы.
Возможен другой вариант начального этапа метаболизма фруктозы. В этом случае фруктоза подвергается фосфорилированию при участии фермента гексокиназы с образованием фруктозо-6-фосфата с использованием в качестве фосфорилирующего агента АТФ. Однако способность гексокиназы фосфорилировать фруктозу сильно ингибируется в присутствии глюкозы, поэтому считается маловероятным, чтобы этот вариант использования фруктозы играл сколь-либо существенную роль в ее метаболизме.
2.1.3.3. Начальный этап метаболизма гликогена
Окислительное расщепление остатков глюкозы из молекулы гликогена чаще всего начинается с его фосфоролитического расщепления: при участии фермента фосфорилазы с использованием неорганического фосфата от молекулы гликогена последовательно отщепляются моносахаридные блоки с образованием глюкозо-1-фосфата. Гл-1-ф при участии фосфоглюкомутазы превращается в гл-6-Ф - метаболит окислительного пути расщепления глюкозы. Такой путь использования гликогена характерен для клеток мышц или печени.
Для клеток мозга или кожи преобладающим является амилолитический путь расщепления гликогена: вначале под действием ферментов амилазы и мальтазы гликоген расщепляется до свободной глюкозы, а затем глюкоза фосфорилируется и подвергается дальнейшему окислению уже известным нам путем.
2.1.4. Анаэробный метаболизм углеводов
Человек является аэробным организмом, так как основным конечным акцептором отщепляемых от окисляемых субстратов атомов водорода является кислород. Парциальное давления кислорода в тканях составляет в среднем 35-40 мм рт. ст. Но это вовсе не значит, что при определенных условиях в тканях не возникает дефицит кислорода, делающий невозможным протекание аэробных окислительных процессов. Торможение окислительных процессов при дефиците кислорода связано с тем, что клеточный пул НАД+ и других коферментов. способных акцептировать атомы водорода от окисляемых субстратов, весьма ограничен. Как только основная их масса переходит в восстановленное состояние из-за дефицита кислорода, дегидрирование субстратов прекращается. Развивается гипоэнергетическое состояние, которое может стать причиной гибели клеток.
В подобного рода условиях в клетках различных органов и тканей включаются механизмы, обеспечивающие клетки энергией, не зависящие от наличия кислорода. Основными из них являются анаэробное окисление глюкозы - анаэробный гликолиз, и анаэробное расщепление гликогена - гликогенолиз. В анаэробных условиях расщепление глюкозы и гликогена идет абсолютно идентичными по сравнению с ранее рассмотренными нами метаболическими путями вплоть до образования пирувата. Однако далее эти пути расходятся: если в аэробных условиях пируват подвергается окислительному декарбоксилированию, то в анаэробных условиях пировиноградная кислота восстанавливается в молочную кислоту. Реакция катализируется ферментом лактатдегидрогеназой:
Разумеется, расщепление глюкозы до лактата сопровождается высвобождением лишь 1/12 - 1/13 всей заключенной в химических связях глюкозы энергии ( ~ 50 ккал/моль ), тем не менее на каждую распавшуюся в ходе анаэробного гликолиза молекулу глюкозы клетка получает 2 молекулы АТФ (2 АТФ расходуется и 4 АТФ синтезируется). При гликогенолизе клетка получит 3 молекулы АТФ на каждый остаток глюкозы из молекулы гликогена ( 1 АТФ расходуется и 4 АТФ синтезируется ). Несмотря на очевидную невыгодность в отношении количества высвобождаемой энергии анаэробные гликолиз и гликогенолиз позволяют клеткам существовать в условиях отсутствия кислорода. Анаэробный путь окисления глюкозы и анаэробное расщепление гликогена играют важную роль в обеспечении клеток энергией, вопервых, в условиях высокой экстренно возникающей функциональной нагрузки на тот или иной орган или организм в целом, примером чего может служить бег спортсмена на короткую дистанцию. Во-вторых, эти процессы играют большую роль в обеспечении клеток энергией при гипоксичеких состояниях, например, при тромбозах артерий в период до развития коллатерального кровообращения или при тяжелых шоковых состояниях с выраженными расстройствами гемодинамики.
Активация анаэробного окисления углеводов приводит к увеличению продукции лактата в клетках и тканях. При сохранении кровообращения этот наработанный в клетках лактат выносится кровью и основная его часть метаболизируется в печени или в сердечной мышце. В миокарде лактат окисляется до углекислого газа и воды; в печени же лишь примерно 1/5 поступающего лактата подвергается окислению до конечных продуктов, а 4/5 - ресинтезируются в глюкозу в ходе интенсивно идущего в печени процесса глюконеогенеза.
Если же вынос лактата из гипоксической ткани невозможен, то при его накоплении в клетках за счет повышения концентрации протонов ингибируется фосфофруктокиназа, в результате чего ингибируются и гликолиз, и гликогенолиз. Клетки, лишенные последних источников энергии, обычно погибают, что наблюдается при инфарктах различных органов, в особенности при инфаркте миокарда.
Следует заметить, что в клетках некоторых органов и тканей человека образование молочной кислоты происходит и в обычных, т.е. в аэробных условиях. Так. в эритроцитах, не имеющих митохондрий. все необходимое для них количество энергии вырабатывается в ходе гликолиза. К тканям с относительно высоким уровнем аэробного гликолиза относятся также сетчатка глаза и кожа. Высокий уровень аэробного гликолиза присущ также многим опухолям.
Биосинтетические процессы, протекающие в клетках, нуждаются не только в энергии, им необходимы также восстановительные эквиваленты в виде НАДФН+Н+и целый ряд моносахаридов, имеющих в своем составе пять атомов углерода,такие как рибоза,ксилоза и др.Образование восстановленного НАДФ идет в пентозном цикле окисления углеводов, а образование пентоз может происходить как в пентозном цикле окисления, так и в других метаболических путях.
... механизмах синтеза гликогена, во всех окислительных путях превращения глюкозы и в синтезе других моносахаридов,необходимых для клетки. Место, которое занимает данная реакции в обмене глюкозы позволяет ее счиатать ключевой реакцией обмена углеводов. Гексокиназная реакция необратима (G= -16,7 кДж/моль), поэтому для превращения глюкозо-6-фосфата в свободную глюкозу в клетках печени и почек ...
... α,d – глюкоза глюкозо – 6 – фосфат С образованием глюкозо – 6 – фосфата пути гликолиза и гликогенолиза совпадают. Глюкозо – 6 – фосфат занимает ключевое место в обмене углеводов. Он вступает в следующие метаболические пути: глюкозо – 6 – фосфат глюкоза + Н3РО4 фруктозо – 6 – фосфат пентозный путь распада (поступает в кровь и др. ...
... . Динамика химических превращений, происходящих в клетках, изучается биологической химией. Задачей физиологии является определение общих затрат веществ и энергии организмом и того, как они должны восполняться с помощью полноценного питания. Энергетический обмен служит показателем общего состояния и физиологической активности организма. Единица измерения энергии, обычно применяемая в биологии и ...
... затратах энергии; 2) при переменных затратах энергии и 3) при затратах на синтез продукции. Наибольшее количество теплоты образуется в органах с интенсивным обменом веществ и большой массой – печени и мышцах. При мышечной работе химическая энергия только на треть переходит в механическую работу, остальные две трети переходят в теплоту. Теплопродукция может увеличиваться в 3…5 раз за счет ...
0 комментариев