2.3. Проектирование колонны сплошного сечения

2.3.1. Расчетная длина колонны и сбор нагрузки

НГБ = ОВН - hстр

НГБ = 8,4 – 1,774 = 6,626 м

Заглубление фундамента hф = 0,7 м.

Геометрическая длина колонны

L = НГБ + hф = 7,326 м.


При опирании балок на колонну сверху, колонна рассматривается как шарнирно закрепленная в верхнем конце. Соединение с фундаментом легких колонн в расчете также принимается шарнирным. Поэтому длина колонны определяется при m = 1:

Lef = mL = 1× 7,326 = 7,326 м.

Грузовая площадь Агр = LГ LВ = 17,5 × 7 = 122,5 м2.

Сбор нагрузки на колонну

Таблица 6

Наименование нагрузки Нормативная нагрузка, кН gf Расчетная нагрузка, кН
1 Временная нагрузка Р = р × Агр = 12 × 122,5 1470 1,2 1764
2 Собственный вес настила и балок G = mngAгр = 151,1 × 10-3×9,81 × 122,5 181,58 1,05 190,66
Итого G+P 1651,58 1954,66

2.3.2. Подбор сечения колонны

Выполним расчет относительно оси Y, пересекающей полки. Гибкость колонны lу = 89,3. Находим jу = 0,50.

Требуемая площадь сечения колонны Атр = 115,2 см2.

Требуемые радиус инерции и ширина полки

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Ширина полки находится из соотношения iY » 0,24bf .

bf = 36 см – принимаем ширину полки, в соответствии с сортаментом прокатной стали.

Высоту стенки hW назначаем так, чтобы удовлетворялось условие h³ bf, hW = 360 мм. Назначив толщину tW = 1,2 см, получим площадь сечения стенки: АW = 43,2 см2. Свес полки:

bef = 0,5(bf – tW) = 0,5(360-12) = 17,4 см.

Предельное значение bef = 17,5 см – находится из условия возможности применения автоматической или полуавтоматической сварки. Т.к. величина свеса полки меньше предельной, условие технологичности сварки выполняется.

Геометрические характеристики сечения.

Площадь сечения:

А = 0,5 (Атр – АW) = 115,2 см2.

Момент инерции:

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Радиус инерции:

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Гибкость: Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Приведенная гибкость: Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Коэффициент продольного изгиба:

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного зданияВключаем в нагрузку вес колонны:

Gк = gАLygf = 77× 115,2× 10-4×7,326×1,1×1,05 = 7,5 кН

Полная расчетная нагрузка Gp = 1962,5 кН

Проверка колонны на устойчивость.

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Недонапряжение составляет 1,2%.

Проверка предельной гибкости.

lU=180 - 60a =180 – 60 × 0,987 = 120,78

где Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Т.к. lY = 89,3 < lU = 120,78, проверка гибкости проходит.

2.3.3. Проверка устойчивости полки и стенки колонны.

Отношение свеса полки к ее толщине:

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания

Наибольшее отношение Проектирование конструкции стальной балочной клетки рабочей площадки промышленного зданияпри условии выполнения устойчивости полки равно 17,72. Т.к. Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания, устойчивость полок обеспечивается.

Проверим устойчивость стенки по условию Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания.

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного зданияПроектирование конструкции стальной балочной клетки рабочей площадки промышленного зданияПроектирование конструкции стальной балочной клетки рабочей площадки промышленного здания; Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания; lUW = 1,2+0,35×l = 1,2+0,35 × 3,65 = 2,5

Принимаем 2,3.

Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания


Информация о работе «Проектирование конструкции стальной балочной клетки рабочей площадки промышленного здания»
Раздел: Промышленность, производство
Количество знаков с пробелами: 32880
Количество таблиц: 6
Количество изображений: 15

Похожие работы

Скачать
22205
1
19

... сопротивление стали Ry=240 Мпа = 24,5 кН/см2 -предел текучести стали Ru=360 Мпа = 37 кН/см2 Предельный прогиб стального листового настила: Предельный прогиб БН и ВБ: Предельный прогиб ГБ: Рассмотрим два варианта компоновки балочной площадки. 1)  Нормального типа 2)  Усложненного типа 2.1 Балочная клетка нормального типа Проектируем балочную клетку нормального типа. В ...

Скачать
43431
12
39

... 3,35<26,4- условие выполнено=> стенка балки обладает прочностью от местного давления. Проверка общей устойчивости балки - расчет на общую устойчивость не требуется. 5. СРАВНЕНИЕ ВАРИАНТОВ БАЛОЧНОЙ КЛЕТКИ. Таблица 10 Наименование элементов 1- вариант 2- вариант 3- вариант Расход стали, кг/ Количество балок, шт Расход стали, кг/ Количество балок, шт ...

Скачать
317684
6
0

... , необходимых для осуществления проектного решения. СНиП 11-01-95 “Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений”. Проект состоит из технологической и строительно-экономической частей. Экономическое обоснование технологической части выполняется инженерами-технологами и экономистами-технологами, а ...

Скачать
20634
0
11

... = 13,92 кН/см2; 2,65<13,92 – условие выполняется. Проверка жесткости: , (15)  ; 0,0047<0,004 –жесткость балки обеспечена. qннаст+бн=0,71+0,260=0,97 кН/м2.   5. Проектирование составной балки Принимаем сталь С255, L=10 м, qн=10 кН/м2, pн=6 кН/м2, qннаст+бн=0,97 кН/м2, , tн=9 мм. Рисунок 4 – Расчетная схема главной балки Собственный вес балки принимаем ориентировочно ...

0 комментариев


Наверх