1 Введение.
Современная оптоэлектроника решает задачи, связанные с исследованием процессов обработки, передачи, хранения, воспроизведения информации и конструированием соответствующих функциональных систем. К числу важнейших элементов таких систем относятся оптические модуляторы, дефлекторы, дисплеи, элементы долговременной и оперативной памяти и др.
В оптических информационных системах перечисленные процессы реализуются путём взаимодействия световых пучков со средой. Это взаимодействие осуществляется с помощью соответствующих материалов, обладающих свойствами которые могут изменятся под воздействием света, механического воздействия, а так же под действием электрического и магнитного полей.
В настоящее время значительная часть радиоэлектронных приборов конструируется на основе монокристаллических элементов с определённой совокупностью физических свойств. Сложные кислородные соединения Bi силленитов типа (mBi2O3×nMexOy) вызывают большой интерес, являясь пьезоэлектриками, обладают электрооптическими и магнитооптическими свойствами, что в сочетании с фотопроводимостью выдвигает их в число перспективных материалов для создания электро- и магнитооптических модуляторов лазерного излучения, запоминающих устройств типа ПРОМ и т.д.
Наибольшую известность среди соединений этого класса приобрели силикаты и германаты висмута для которых разработана технология выращивания крупных монокристаллов и достаточно полно изучены физико-химические свойства и структура.
В последнее время вопросы создания оптоэлектронных элементов методами интегральной технологии становятся всё более насущными. В связи с вышеуказанными преимуществами силленитов в последние годы проводилось много исследований плёнок со структурой силленита, в которых отмечалась перспективность их использования в оптоэлектронике и пьезотехнике.
В связи с заметным влиянием природы структурообразующего иона на свойства позволяющем расширить области применения, а точнее замена р-элементов (Ge, [ ] ns2np2) в Bi12ЭO20 ионами переходных металлов, имеющих неспаренные 3dn-электроны приобретаются новые свойства (изменения окраски, расширение области пропускания в длинноволновой части спектра)
Данная работа посвящена выращиванию плёнок силленитов (в частности Bi12GeO20 легированного Cr2O3) на подложках Bi12GeO20 и изучению некоторых их свойств.
2 ЛИТЕРАТУРНЫЙ ОБЗОР.
2.1 Соединения со структурой силленита.
Кристаллы со структурой силленита относятся к пентагонтритетраэдрическому классу I 23 кубической сингонии и принадлежит к пространственной группе T3(I23) [1,2].
Sillen обнаружил, что при взаимодействия Bi2O3 с оксидами Si, Ge, Al, Fe, Zn, Pb и др., образуется объёмоцентрированная кубическая фаза [3,4] с элементарной ячейкой содержащей две формульные единицы.
Позднее более тщательные исследования [5] показали, что соединения со структурой силленита образуются при взаимодействии g-Bi2O3 с оксидами элементов, способных иметь четверную координацию по кислороду.
Параметр элементарной ячейки объёмоцентрированной кубической g-Bi2O3 а=10,245 ± 0,001 Å, а измеренная гидростатическая плотность составляет 9,239 г/см3 [1].
2.1.1 Структура германата висмута.
Атомы кислорода О(3) расположены на главных диагоналях элементарной ячейки вокруг Ge, образуя правильный тетраэдр, на что было обращено внимание в работах [6-8] (рис. 1.1.1.).
На одинаковом расстоянии от каждого атома кислорода О(3) (2,640 Å) расположены три атома висмута. Вi . В кристаллах Bi12GeO20 атомы кислорода связаны с атомами висмута и германия ионно - ковалентными связями из-за значительно большей электроотрицательности атома кислорода.
Каждый атом висмута окружен семью атомами кислорода, расположенными на разных расстояниях от него и представляющих собой искажённый полиэдр (рис. 1.1.2.).
Рис. 1.1.1. Расположение тетраэдров [GeO4] в элементарной ячейке германосилленита [2].
Рис.1.1.2. Строение полиэдра [BiO7].
По мнению [6] ион висмута образует пять ионно – ковалентных связей с ионами кислорода (O(2), O(3), O(1a), O(1b), O(1c)), которые принадлежат одной с ним примитивной ячейке, и смещён на 0,197 Å по отношению к центру плоскости, образованной четырьмя атомами кислорода. Два других атома кислорода (О(1d) и О(1e)) принадлежат соседним примитивным ячейкам и удалены на расстояние 3,08 и 3,17 Å, что вызвало сомнения в отношении характера связи. Каждый [BiO7] окружён девятью подобными комплексами, расположенными таким образом, что образуются винтовые оси [6].
Модель элементарной ячейки Bi12GeO20 была предложена в работе [2]. Эта модель помогла рассмотреть свойства этих соединений с точки зрения их кристаллической структуры.
... Источники излучения. Оптоэлектроника базируется на двух основных видах излучате- лей: лазерах (когерентное излучение) и светоизлучающих диодах (некогерентное излучение). В оптоэлектронике находят применение маломощные газовые, твердотельные и полупроводниковые лазеры. Разрежённость газового наполнения в рабочем объёме обусловливает высокую степень монох- роматичности, одномодовость ...
... оптического квантового генератора - лазера (1960 г.). Примерно в то же время (50-60-е гг.) получили достаточно широкое распространение светоизлучающие диоды, полупроводниковые фотоприёмники, устройства управления световым лучом и другие элементы оптоэлектроники. 1.2. Генерация света. Оптический диапазон составляют электромагнитные волны, длины которых простираются от 1 мм до ...
... Среднее значение: 1.5%. Вывод: коэффициент полезного действия фотодиода согласно полученным данным составил в среднем 1.5%. 5.ПРИМЕНЕНИЕ ФОТОДИОДА В ОПТОЭЛЕКТРОНИКЕ Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах. И поэтому он находит широкое применение. а) оптоэлектронные интегральные микросхемы. Фотодиод может обладать большим быстродействием, но ...
... Cu2S на CdS, имеют красную инжекционную люминесценцию, интенсивность которой линейно менялась с током. Этот процесс, по-видимому, связан, с рекомбинацией через глубокие центры. Применение гетеропереходов. Излучатели. Инжекционный лазер. Инжекционнный лазер представляет собой полупроводниковый двухэлектродный прибор с p-n-переходом (поэтому часто как равноправный используется термин ...
0 комментариев