2.1.4. Метод переноса объемных выводов.

В этой технологии ОВ выполняются на временной подложке, затем присоединяются к концам балочных выводов ленты-носителя, что существенно снижает стоимость сборки и упрощает ее. Принцип этой технологии отражен на рис.4.

В данном случае ЛН выполнена из полиимидной пленки толщиной 125 мкм, ламинированной с медной фольгой толщиной 35 мкм, в которой формируют травлением выводную рамку с последующим ее лужением и золочением. Оптимальная толщина облуженного слоя 0.3-0.45 мкм. Временная подложка состоит из теплостойкой стеклянной пластины со слоем металлизации, который служит электродом для нанесения золотых ОВ. Подложка должна надежно поддерживать сформированные выводы и выполнить их перенос при самых низких давлениях и температурах инструмента. Качество переноса зависит от плоскостности и гладкости временной подложки, которую можно использовать многократно.

Сформированные выводы имеют форму "гриба" , высота 20-40 мкм, размер в широкой части 80*80 мкм и 20*20 мкм в нижней части. На прочность присоединения ОВ влияют его форма и чистота золота (хорошее качество присоединения наблюдается для выводов из золота 99.95%, для выводов с содержанием золота 67% наблюдается растрескивание выводов при сборке).

Разработка газоразрядного экрана

рис 4

2.2. Разработка технологического процесса сборки высоковольтного драйвера газоразрядного экрана на полиимидном носителе.

Для того, чтобы производить сборку полиимидного носителя с кристаллом необходимо проскрайбировать диск с кристаллами и совершить его ломку. Скрайбирование предполагают делать на установке ЭМ-225. Полуавтомат позволяет обрабатывать пластины диаметром до 150 мм. Ширина реза 40 мкм, глубина реза за один проход при скорости 100 мм/с - 140 мкм. Погрешность перемещения относительно центра при общей длине хода 150 мм - 15 мкм.

После скрайбирования и ломки необходимо выполнить внешний контроль. Контроль внешнего вида можно произвести на микроскопе типа СМ-4.

Следующим этапом техпроцесса является присоединение полиимидного носителя к кристаллу. Данная операция выполняется на автоматизированной установке ЭМ-4062. Установка позволяет изменять технологические режимы ультразвуковой сварки, что существенно сказывается на качестве сварного соединения. После присоединения выводов к контактным площадкам необходимо нанести защитное покрытие. Эту операцию выполняют в печи ПБЛ. Затем проводят технологические испытания на холод, тепло в камере МС-71.

Измерение статических параметров производится прибором "Визир-1", а измерения функционально-динамических параметров выполняют на "Элеком-Ф".

После всего кристалл загружается на 7 суток в установку "Кардинал", где при полной работе микросхемы повышается и понижается температура.

Перед тем как упаковать микросхему в тару делают еще один контроль статических и функционально-динамических параметров на установках "Визир-1" и "Элеком-Ф".

КОНСТРУКТОРСКАЯ ЧАСТЬ

Глава 3.

3.1. Анализ конструкции экрана с применением высоковольтного драйвера на полиимидном носителе.

Устройства для отображения информации применяются в системах, где информацию требуется представить в форме, удобной для визуального восприятия. Их основными компонентами являются приборы, обеспечивающие преобразование электрических сигналов в пространственное распределение яркости излучения или в распределение степени пропускания или поглощения светового излучения. С помощью этих приборов из электрических сигналов получают видимое изображение букв различных алфавитов, цифр, геометрических фигур, различных знаков, сплошных или дискретных полос, мнемосхем и др.

Преобразовательные приборы данной группы создаются на основе активных излучающих компонентов : электронно-лучевых трубок; электролюминесцентных, газонаполненных или накаливаемых источников излучения, в которых излучающие элементы выполнены в виде фигур или сегментов, или образуют управляемое матричное поле, а так же пассивных компонентов, модулирующих световой поток : жидкокристаллических, в которых пропускание или отражение света различными участками поверхности зависит от значения электрического поля; электрохромных, в которых цвет вещества зависит от значения электрического поля; электрофоретических, в которых под действием электрического поля перемещаются заряженные пигментные частицы, имеющие определенный цвет.

Наиболее часто применяют так называемые знакосинтезирующие индикаторы (ЗСИ), в которых изображения получают с помощью мозайки из независимо управляемых преобразователей электрический сигнал - свет.

Жидкокристаллические индикаторы относятся к числу пассивных приборов. В основу их работы положено свойство некоторых веществ изменять свои оптические показатели (коэффициенты поглощения, отражения, рассеивания, показатель преломления, оптическую разность хода, оптическую активность, спектральное отражение или пропускание). под влиянием внешнего электрического поля. Вследствии модуляции падающего света изменяется цвет участка, к которому приложено электрическое поле, и на поверхности вещества появляется рисунок требуемой конфигурации.

В качестве веществ, имеющих подобные свойства, используют жидкие кристаллы. Жидкокристаллическим (мезоморфным) называется термодинамически устойчивое состояние, при котором вещество сохраняет анизотропию физических свойств, присущую твердым кристаллам, и текучесть, характерную для жидкостей.

ЖК-индикаторы просты по конструкции, дешевы, имеют низкое энергопотребление, обеспечивают хорошую контрастность изображения, которая не уменьшается при увеличении освещенности, хорошо совместимы с микросхемами управления. Их недостатки : необходимость иметь подсветку при работе в темноте, узкий температурный диапазон (от -15 до +55 ° С), изменение параметров в течение срока хранения и при работе.

Газонаполненные приборы для отображения информации, к которым относится и наш газоразрядный экран, представляют собой источники излучения, зона свечения в которых имеет определенную форму и может управляться электрическими сигналами.

Выпускаются ЗСИ матричной конструкции, позволяющие проводить отображение графической, буквенно-цифровой и мнемонической информации. Определенное распространение получили буквенные и цифровые ЗСИ, в которых изображение получают с помощью комбинаций светящихся сегментов или целых цифр.

ЗСИ матричной конструкции имеют плоскую форму и состоят из двух пластин, на которых выполнены наборы параллельных проводников, покрытых прозрачным диэлектриком. Пластины располагаются на небольшом расстоянии друг от друга так, чтобы электроды были взаимно перпендикулярны. Камеру, образовавшуюся между ними заполняют смесью неона и других инертных газов и герметизируют.

При определенных значениях электрического поля, создаваемого в местах пересечения электродов, происходит ионизация и свечение газа. Цвет его зависит от газового состава. Форма близка к точечной. Совокупность светящихся точек образует требуемые буквы, цифры, графики или мнемосхемы. Яркость свечения определяется значением питающего напряжения, его частотой, свойствами газа и диэлектрических покрытий электродов. Последний фактор обусловлен тем, что диэлектрическое покрытие создает "емкостную связь" между электродом и газом и при данном напряжении определяет максимальное значение разрядного тока.

Рассмотрим явление свечения в газоразрядных источниках излучения.

Разработка газоразрядного экрана

Рис 5

Причины появления свечения поясним на примере рассмотрения газоразрядного промежутка между двумя электродами, находящимися в среде инертного газа (обычно неона Ne или ксенона He) либо их смесей см. Рис 5. Если к электродам приложить малое напряжение U (U<UЗАЖ) то в цепи будет протекать малый ток, обусловленный наличием в газе небольшого числа ионов, возникших вследствие воздействия теплоты, падающего света и космического излучения, а также вызванный эмиссией (излучением) электронов из электрода, находящегося под отрицательным потенциалом (катода). Это так называемый темновой разряд, при котором нет видимого свечения газа.

С повышением напряжения электроны, эмиттируемые катодом, приобретают большие скорости и начинают ионизировать газ. В результате появляются дополнительные электроны и ионы, но до точки А их недостаточно для возникновения самостоятельного разряда. За точкой А начинается самостоятельный разряд. Напряжение в точке А называется напряжением зажигания . На участке АВ происходит уменьшение напряжения при увеличении тока. За точкой В начинается тлеющий разряд (область ВС).

Физические процессы, происходящие за точкой А, можно упрощенно представить следующим образом. Электроны, испускаемые катодом под воздействием света, внешних излучений и бомбардировке катода ионами, приобретают в электрическом поле такую скорость, что начинается лавинная ионизация газа. Положительно заряженные ионы под действием электрического поля движутся к катоду и, бомбардируя его, вызывают появление дополнительных электронов, необходимых для поддержания самостоятельного разряда. Часть ионизированных и тем самым возбужденных атомов газа переходит в нормальное невозбужденное состояние путем "присоединения" электрона к положительно заряженному иону. При этом излучается квант света. Другая часть положительно заряженных ионов накапливается вблизи катода, образуя положительный пространственный заряд. Основная часть напряжения, приложенного к электродам, падает на этом небольшом прикатодном участке. Пространственные заряды положительно заряженных ионов и электронов, находящихся в газоразрядном промежутке, в значительной степени уравновешивают друг друга. Поэтому в газонаполненном приборе удается получить большие токи при сравнительно небольшом напряжении, приложенном к электродам.

Для прекращения газового разряда и потухания газонаполненного прибора необходимо уменьшить напряжение на электродах так, чтобы оно стало меньше UГОР. В этом случае самостоятельный разряд прекращается и происходит деионизация газового промежутка. Время деионизации лежит в пределах мкс.

Одним из вариантов изготовления нашего экрана может быть не газоразрядные источники излучения, а электролюминесцентные управляемые источники света , которые в настоящее время являются наиболее перспективными.

Люминесценция - это световое излучение, превышающее тепловое излучение при той же температуре и имеющее длительность, значительно превышающую периоды излучений в оптическом диапазоне спектра.

Для возникновения люминесценции в каком-либо теле, в том числе и в полупроводнике, необходимо привести его с помощью внешних источников энергии в возбужденное состояние, т.е. в состояние, при котором его внутренняя энергия превышает равновесную при данной температуре.

При воздействии электрического поля или тока появляется электролюминесценция.

Люминесценция характеризуется достаточно длительным свечением после того, как действие возбуждающего фактора прекратилось. Это обусловленно тем, что акты поглощения возбуждающей энергии отделены по времени от актов излучения. В итоге излучение при люминесценции является некогерентным и имеет достаточно широкий спектр.

Электролюминесценция в полупроводниковых элементах оптоэлектроники может быть вызвана как электрическим полем, так и током. При воздействии электрического поля на полупроводники, называемые люминофорами, возникает ударная ионизация их атомов электронами, ускоренными электрическим полем, а также эмиссия электронов из центров захвата. Вследствие этого концентрация свободных носителей заряда превысит равновесную и полупроводник окажется в возбужденном состоянии.

Возбуждение электрическим током обычно происходит в тех полупроводниках, где созданы электрические переходы. Избыточная концентрация носителей заряда в них обеспечивается или за счет инжекции неосновных носителей заряда под действием внешнего источника напряжения, или за счет лавинного и туннельного пробоев, возникающих под воздействием внешнего напряжения, приложенного в обратном направлении.

К электролюминесцентным источникам света обычно относят порошковые, сублимированные, монокристаллические фосфоры, у которых в сильных электрических полях возникает электролюминесценция.

По эффективности электролюминесцентные источники света, за редким исключением уступают лампам накаливания и газоразрядным источникам света. Однако они имеют и ряд существенных преимуществ :

- технологичность;

- высокое быстродействие;

- большой срок службы;

- надежность в эксплуатации;

- микроминиатюрность исполнения;

- высокую монохроматичность излучения.

1. НАЗНАЧЕНИЕ

1.1. КТО на вновь разрабатываемые изделия предназначены для пользования при проектировании гибкого полиимидного носителя (платы гибкой), применяемого для монтажа на кристалл и установки на коммутационные платы.

1.2. При проектировании плат гибких руководствоваться ОСТ II 0419-87 "Микросхемы интегральные бескорпусные на полиимидном носителе. Конструктивно-технологические требования" ОСТ В II 0546-89 "Микросхемы интегральные бескорпусные на гибком носителе с ленточными выводами. Общие технические условия", СТП ХА 419-90 и настоящими конструктивно-технологическими ограничениями.

1.3. В состав исходных данных для проектирования платы гибкой должны входить :

техническое задание на проектирование (с эскизом на посадочное место под плату гибкую),

учтенный чертеж на кристалл с предельными отклонениями на габаритные размеры,

реальный кристалл (для уточнения размеров)

2. РЕКОМЕНДУЕМЫЕ ОБЩИЕ ТРЕБОВАНИЯ К ПЛАТЕ ГИБКОЙ

2.1. Платы гибкие изготавливаются из лакофольгированного диэлектрика по технологии, предусматривающей использование двух вариантов (рулонного и кассетного)

2.2. Платы гибкие могут выполняться с двухсторонним или четырехсторонним расположением выводов в зоне монтажа.

2.3. В плате гибкой предусмотрены :

зона присоединения выводов к кристаллу,

зона формовки (при необходимости)

зона присоединения выводов на плату,

зона контактирования.

2.4. Шаг выводов платы гибкой в зоне разварки на кристалл должен соответствовать шагу контактных площадок (КП) кристалла, в зоне монтажа на плату - шагу КП на плате.

2.5. В плате гибкой необходимо предусматривать три технологических отверстия для укладки платы гибкой в тару-спутник, предельные отклонения размеров которых не должны превышать 60 мкм.

2.6. В плате гибкой предусматривать не менее двух базовых отверстий размером 0.8 ± 0.05 мм, необходимых при использовании оснастки для формовки и вырубки.

2.7. Расположение кристалла на плате гибкой должно быть симметричным относительно осей плате гибкой.

2.8. В зоне присоединения выводов к кристаллу должны быть две полиимидных рамки :

защитная (на краю кристалла),

опорная (ближе к центру кристалла).

Примечания. I. Рекомендуется предусматривать соединение опорной и защитной рамок перемычками шириной не менее 100 мкм, которые рекомендуется укреплять металлизацией.

II. Расстояние между выводами и перемычками должно быть не менее 50 мкм (в готовом виде)

III. При размерах кристалла более 4 мм, хотя бы с одной из сторон, рекомендуется предусматривать внутри опорной рамки перемычки шириной 300-400 мкм с металлизацией, расстояние между которыми должно быть 400-800 мкм.

2.9. В плате гибкой в области за зоной вырубки до зоны контактирования по осям платы гибкой для контроля сварки предусматривать не менее шести технологических выводов, имеющих размеры, идентичные размерам выводов в зоне присоединения к плате.

2.10. В плате гибкой в области за зоной вырубки до зоны контактирования по осям платы гибкой предусматривать не менее трех технологических выводов, имеющих размеры, идентичные размерам выводов в зоне присоединения к кристаллу, для проверки прочности сварки на кристалле.

2.11. В зоне монтажа в области защитной полиимидной рамки по углам должно быть два реперных элемента, расположенных по диагонали, в виде металлизированных квадратов размером (200х200) мкм для автоматического совмещения.

2.12. Плата гибкая должна иметь в углу технологические тестовые элементы в слое металлизации и полиимиде и маркировку (три последние цифры децимального номера)

2.13. Конструкция платы гибкой должна обеспечивать просмотр маркировки кристалла.

2.14. В топологии для платы гибкой и фотошаблона вводить реперный знак (крест) для совмещения слоев размером 200-500 мкм

Реперный знак располагать в центре платы гибкой.

Реперный знак должен быть :

В слое № 1 - в виде отверстия в металлизации,

В слое № 2 - в виде фигуры полиимида.

Реперный знак слоя №1 должен вписаться в реперный знак слоя №2 с зазором 10 мкм.

В случае невозможности расположения в центре, реперный знак располагать на выпадающих элементах.

Реперный знак не должен обрабатываться припусками и усадками.

2.15. На границе металлизированных элементов и в отверстиях необходимо обеспечить перекрытие металла полиимидом на 50 мкм по ширине.

2.16. Минимальная величина зазора между металлизированными элементами 40 мкм (в готовом виде).

2.17. Величина зазора между металлизированными элементами в зоне монтажа должна быть одинаковой по всей их длине (по возможности).

2.18. Для выполнения необходимой разводки допускается использовать внутреннюю зону платы гибкой (внутри опорной рамки), выполняя при этом рекомендации примечания 3 п 2.8.

2.19. При необходимости допускается зоне присоединения к кристаллу вывод закольцовывать.

2.20. Минимальный размер проводников, в том числе и лежащих на защитной полиимидной рамке, должен быть не менее номинального размера вывода по таблице 4.

2.21. При необходимости допускается выполнять расположение выводов и контактных площадок в зоне контактирования в шахматном порядке.

2.22. При длине проводника, свободного от полиимида, между защитной полиимидной рамкой и зоной контактирования более 1000мкм необходимо вводить полиимидные рамки.

Ближняя к зоне присоединения к плате полиимидная рамка (в зоне формовки) должна быть разрезана по углам (в случае четырехстороннего расположения выводов). При этом ширина полиимидных перемычек в зоне формовки должна быть не более 200 мкм, а расстояние между перемычкой и защитной полиимидной рамкой (при ее наличии), расположенной между защитной перемычкой в зоне формовки, должно быть не менее 300 мкм.

2.23. В технически обоснованных случаях размеры, указанные в разделах 2,3 и вводимые в формат, могут уточняться при обязательном согласовании с технологом.

2.24. Контролируемыми размерами на плате гибкой являются :

ширина вывода в зоне присоединения к кристаллу,

ширина вывода в зоне присоединения к плате.

2.25. В технически обоснованных случаях указывать размеры между крайними выводами в зоне присоединения к кристаллу в каждом ряду, между внутренними противоположными сторонами защитной полиимидной рамки по двум направлениям, между внутренними сторонами реперных элементов с допуском ± 50 мкм., указывающих линию присоединения золотых объемных выводов (ЗОВ).

2.26. В чертеже на плату гибкую указывать размеры, обеспечивающиеся инструментом :

межосевое расстояние базовых отверстий с допуском,

расстояние между внешними сторонами реперных элементов с допуском,

расстояние от базовых отверстий до внешней стороны реперного элемента с допуском,

ширину полиимидных рамок и перемычек и расстояния между ними.

3. МИНИМАЛЬНО ДОПУСТИМЫЕ РАЗМЕРЫ ЭЛЕМЕНТОВ ТОПОЛОГИИ

3.1. Зона монтажа.

3.1.1. Зона присоединения к кристаллу.

3.1.1.1. Ширина выводов в зоне присоединения к кристаллу должна соответствовать размеру КП кристалл -10мкм, допустимые отклонения по табл.4, графа 3, а допустимые размеры фотошаблонов при их изготовлении должны соответствовать данным, указанным в таблице 5.

3.1.1.2. Ширина опорной полиимидной рамки должна быть не менее 300 мкм.

3.1.1.3. Ширина защитной полиимидной рамки должна быть 300-500 мкм.

3.1.1.4. Величина заходов выводов на опорную полиимидную рамку должна быть не менее 150 мкм.

3.1.1.5. Величина захода полиимидной защитной рамки на пассивацию кристалла должна быть не менее 10 мкм.(в готовом виде).

3.1.1.6. Расстояние между внутренними противоположными сторонами защитной полиимидной рамки должно соответствовать указанному в таблице 3.

3.1.1.7. Расстояние между КП кристалла и полиимидной опорной рамкой должно быть 50-200 мкм (в готовом виде)

3.1.1.8. В технически обоснованных случаях, допускается использование выводов в консольном варианте, при этом выводы должны выходить за пределы контактных площадок на 10-20 мкм.

3.1.2. Зона присоединения к плате.

3.1.2.1. Ширина выводов в зоне присоединения к плате, допустимые отклонения должны соответствовать таблице 5, а допустимые размеры фотошаблонов должны соответствовать данным, указанным в табл. 6.

3.1.2.2. Длина выводов в зоне присоединения на плату должна быть 500-1000 мкм, в зависимости от конкретной конструкции платы гибкой по согласованию с технологом.

3.1.2.3. Ширина реперного элемента £ 100мкм, длина реперного элемента 100-200 мкм.

Таблица 4

Размер КП на кристалле (мкм)

Зазор между КП

(мкм)

Ширина вывода в КД

на ПН (мкм)

100

³ 60

100-40

120

³ 60

110-40

130

³ 70

120-50

140

³ 70

130-50

150

³ 70

130-50

Таблица 5

Шаг выводов (мкм)

Ширина вывода в КД на ПН (мкм)

0,5

0,625

+50

250

-10

0,625

+20

300

-40

Таблица 6

Ширина

вывода в

КД на

Ширина вывода в

для ГИ припуск

информации

(мкм)

Ширина вывода

лон и припуск

на фотошаб-

(мкм)

ПН (мкм)

Рулонная

технология

Кассетная

технология

Рулонная

технология

Кассетная

технология

+50

250

-10

300

(25 на сторону)

320

(35 на сторону)

300 ± 5

320 ± 5

+20

300

-40

320

(10 на сторону)

340

(20 на сторону)

320 ± 5

340 ± 5

3.3. Конструкция для крепления кристалла при ультразвуковой сварке.

При сборке микросхем с применением полиимидного носителя с облуженными Al выводами, после технологических процессов, таких как, ломка пластин на кристаллы, укладка кристаллов в тару и контроль внешнего вида, возникает необходимость присоединить полиимидные выводы (паучок) непосредственно к самому кристаллу.

Разработанный механизм перемещения позволяет зафиксировать сам кристалл на фиксаторе, сначала с помощью откачки воздуха из- под кристалла, а затем уже "губками", которые окончательно закрепляют кристалл с четырех сторон и не позволяют ему смещаться при механических нагрузках во время УЗС.

Предусмотрено перемещение закрепленного кристалла для проведения ультразвуковой сварки по трем координатам : x, y, z и по углу наклона.

Чертежи прилагаются.

ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ

Глава 4.


Информация о работе «Разработка газоразрядного экрана»
Раздел: Наука и техника
Количество знаков с пробелами: 59427
Количество таблиц: 0
Количество изображений: 11

Похожие работы

Скачать
13763
0
5

... технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров. 3. Преимущества Газоразрядных мониторов: Компактность (глубина не превышает 10 - 15 см) и легкость при достаточно больших размерах экрана (40 - 50 дюймов). Малую толщину - газоразрядная ...

Скачать
34952
0
13

... . Значительно перспективнее высокочастотный разряд, для которого характерны самоограничение и отсутствие непосредственного кон-такта газа с электродами (рис. 3.10,6). Среди газоразрядных индикаторов выделяют: знаковые, шкальные и универсальные (плазменные панели). На смену громоздкой пакетной конструкции газоразрядной лампы с десятью изолированными катодами, ...

Скачать
83541
16
16

... , КФ1158ЕНхх с малым падением напряжения вход - выход охватывает диапазон выходных напряжений от 3 до 15В. Все стабилизаторы предназначены для широкой области применения и идеально подходят для нужд автомобильной электроники, так как имеют встроенную защиту от выбросов входного напряжения при сбросе нагрузки генератора до 60 В, защиту при подключении входного напряжения в обратной полярности и от ...

Скачать
26449
2
17

... и возможность работы при низких температурах. Существует много конструкций ГИП переменного тока, одна из них приведена на рисунке (рис. 2.1). В основу ГИП переменного тока положена трехэлектродная структура газоразрядной ячейки. Рис. 2.1 Два так называемых дисплейных электрода (ионизирующий и развертки) - полупрозрачные, они нанесены на поверхность внешнего стекла, ...

0 комментариев


Наверх