3.3.1.2 В частотной области

Вейвлет преобразование можно провести в частотной области. Для этого снова в первую очередь необходимо определить материнский вейвлет. Расчет по данной схеме происходит следующим образом: преобразование Фурье самого вейвлета (в данном случае будем рассматривать вейвлет Морле) сконцентрировано вокруг некоторой выделенной частоты w 0 ≠ 0. Поэтому преобразование Фурье вейвлета, растянутого в s раз, будет сконцентрировано вокруг частоты w 0/s (см рис. 4).

Непрерывное Вейвлет-преобразование

Рис 4. Преобразование Фурье функции вейвлета.

Так как свертка функций эквивалентна их перемножению в частотной области, “строка” s = const на изображении вейвлет преобразования показывает эволюцию изучаемой функции на частотах, близких w 0/s. То есть умножение Фурье-спектра исходной функции на пик в точке w 0/s в частотной области (то есть на Фурье-образ растянутого вейвлета) вырезает из этой функции все то, что дает вклад в ее спектр на частотах, близких w 0/s. В результате получается развертка спектрального компонента во времени. [1]

Основные формулы имеют вид:

Непрерывное Вейвлет-преобразование(5)

где (*) – означает комплексно-сопряженное, а знак (^) – преобразование Фурье.

Непрерывное Вейвлет-преобразование(6)
Непрерывное Вейвлет-преобразование(7)

Блок – схема алгоритма:

Непрерывное Вейвлет-преобразование

3.3.2 Выбор материнского вейвлета

В качестве материнского вейвлета подходит любая функция, удовлетворяющая двум вышеуказанным условиям. Для реализации алгоритма в качестве анализирующего вейвлета было решено воспользоваться вейвлетом Морле (рис. 5). Это было сделано по трем причинам:

вейвлет Морле один из наиболее популярных [1] и широко применяется он обладает значительной наглядностью он прост в вычислительном плане, что ускоряет работу алгоритма Непрерывное Вейвлет-преобразование

рис 5. Вейвлет Морле.

Фактически вейвлет Морле является произведением комплексной синусоиды на гауссиан.

Непрерывное Вейвлет-преобразование, (8)

где y является значением вейвлет функции с безразмерным периодом h , а w 0 - волновой параметр (при реализации w 0=6).

Необходимо также отметить, что вейвлет Морле является комплекснозначным, то есть имеет действительную и мнимую части.

4 ОПРЕДЕЛЕНИЕ УЗЛОВЫХ ТОЧЕК ЭКГ НА ОСНОВЕ НЕПРЕРЫВНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ 4.1 Стандарты описания и обозначения ЭКГ.

Электрокардиограмма (ЭКГ) человека – сигнал, считываемый в результате распространения волны деполяризации и реполяризации по сердечной мышце. Электрокардиограмма (ЭКГ) представляет собой некоторый сигнал, имеющий пять характерных пиков - P, Q, R, S и T :

Обозначенные особенности (пики и интервалы) и являются стандартами описания электрокардиограммы человека.

4.2 Постановка задачи идентификации.

По временным и амплитудным характеристикам пиков и интервалов врач может определить наличие тех или иных заболеваний у исследуемого пациента. Наиболее важную информацию несет пик R, в частности, именно по этому пику можно найти частоту сердечных сокращений.

В зависимости от конфигурации электродов на теле пациента различают, так называемые, отведения. В медицинской практике используются 12 стандартных отведений, 8 из которых линейно независимы, а еще 4 являются их линейной комбинацией.

В линейных методах для определения временных характеристик ЭКГ (то есть для решения задачи идентификации) обычно используют второе отведение.

Под задачей идентификации, обычно, понимают вычисление временных положений пиков. Также определяют частоты, присутствующие в сигнале, так как, например, присутствие в сигнале определенных высокочастотных компонент может свидетельствовать о ненормальной работе сердца. Поэтому появилась необходимость использования методов частотного анализа, одним из которых является вейвлет-преобразование.

4.3.Построение модели идеальной ЭКГ

В медицинских источниках есть сведения о параметрах ЭКГ здорового человека. Обычно эти данные и являются отправной точкой при анализе очередной электрокардиограммы. Для выработки подходов к автоматической идентификации нарушений в работе сердца необходимо построить модель сигнала В результате в ходе выполнения работы были построены две модели идеальной ЭКГ. Первая – для системы Matlab. Вторая – в рамках спецификации компьютерного кардиологического комплекса для анализа ЭКГ человека (для модуля “Vision”). В обоих случаях модель представляет собой одномерный массив чисел, с частотой дискретизации 225 Гц. Длительность выбрана из расчета 2-3 сердечных сокращений.

4.4.Анализ модели ЭКГ.

Процедура анализа модели дает представление об эффективности и целесообразности применения соответствующих программных средств и алгоритмов с целью решения той или иной задачи. В связи с этим данному разделу уделено особое внимание.

1. В системе Matlab.

В системе Matlab с использованием стандартных средств данной системы построена модель двух сокращений сердечной мышцы. Графически она имеет следующий вид:

Непрерывное Вейвлет-преобразование

рис 7. Модель ЭКГ в системе Matlab.

Результаты применения аппарата непрерывного вейвлет-преобразования к данной модели выглядят следующим образом:

Непрерывное Вейвлет-преобразование

рис 7. Вейвлет-преобразование в Matlab.

2. С использованием “Vision”.

Модель электрокардиограмы в данном случае имеет те же параметры, однако ее длительность увеличена до 3 секунд. Результаты ее обработки в модуле “Vision” выглядят следующим образом:

Непрерывное Вейвлет-преобразование

рис 8. Вейвлет-преобразование в “Vision”.

В данном случае темный оттенок свидетельствует о присутствии соответствующей частоты в сигнале в данный момент времени. Частота, в максимальной степени присутствующая в сигнале, выделена особо.

3. Сравнительный анализ полученных результатов.

Результат, полученный в среде Matlab хорошо локализует особенности ЭКГ, однако возникают проблемы с “чтением” масштаба как по временной оси, так и по частотной. Видно, что продвижение по времени осуществляется не по секундам (или другим временным единицам), а по индексу в массиве, содержащим сигнал. О частотных характеристиках сигнала можно судить лишь приблизительно, ввиду их значительной “размазанности” (см приложение 1.). Все это позволяет сделать вывод о том, что аппарат непрерывного вейвлет-преобразования в среде Matlab не слишком эффективен для решения задачи идентификации.

“Vision” дает наглядную частотно-временную развертку, позволяющую быстро и без дополнительных расчетов определить степень присутствия той или иной частоты в конкретный момент времени. Этому в определенной степени способствует удобный масштаб (Гц,Сек). Помощь при решении задачи идентификации оказывает механизм выделения максимально присутствующей частоты (см. рис 8). Неудобство составляют небольшие искажения в области малых времен, связанные с особенностями непрерывного вейвлет-преобразования.

5.ПРОГРАММНАЯ РЕАЛИЗАЦИЯ 5.1.Структура программы

Программа содержит несколько модулей выполняющих различные функции: описание формата данных, прорисовка “миллиметровки” на которую непосредственно наносится ЭКГ, вычисление непрерывного вейвлет-преобразования, визуализация частотно-временной развертки.

“Vision” читает файлы формата “*.1sf”, содержащие записанную на кардиографе электрокардиограмму. При непосредственном считывании сигнал автоматически отображается в окне на “миллиметровой бумаге”. С помощью полосы скроллинга можно просмотреть все двенадцать отведений. На странице “Анализ” представлены необходимые инструменты для построения частотно-временного спектра. Имеется возможность выбора отведения для анализа (1-12), по умолчанию предлагается второе, как наиболее часто используемое. При проведении анализа измеряется время продолжительности процесса.

5.2.Форматы данных

Формат файла “*.1sf” в начале содержит заголовок, который описывает параметры, а также форму записи электрокардиограммы.

Здесь используется структура имеющая вид:

type

OtvData = array [0..MaxArrayOtv] of SmallInt;

OtvPointer = ^ OtvData;

OtvNumber = array [0..MaxNumberOtv] of OtvPointer;

OtvYLineP = array [0..MaxNumberOtv] of Integer;

PtrOtvYLineP = ^ OtvYLineP;

DataPointer = ^ OtvNumber;

LocationType = (Vertical, Horizontal);

WorkStyleType = (Standart12, Franc, Aculinichev, Reserved);

ECGType = record

Frequency : Word;

Time : Single;

OtvQuantity : Byte;

Location : LocationType;

WorkStyle : WorkStyleType;

MultipleCoef : Single;

end;

Frequency – частота съема ЭКГ, Time – продолжительность съема, OtvQuantity – количество отведений, Location – формат записи (Vertical – предусматривает параллельную запись всех отведений, применяется при считывании данных с кардиографа, Horizontal – последовательная запись отведений: сначала первое, затем второе и т.д.), MultipleCoef – коэффициент числового ряда сигнала.

5.3.Оценка временных затрат

Основными критериями, определяющими скорость работы программы являются: частота съема ЭКГ и параметры аппаратной части.


Информация о работе «Непрерывное Вейвлет-преобразование»
Раздел: Математика
Количество знаков с пробелами: 20277
Количество таблиц: 0
Количество изображений: 10

Похожие работы

Скачать
13755
0
17

... сохранить относительную "плотность" расположения базисных функций по оси t при расширении или сжатии самой функции и при  (рис 3.6) Таким образом, базисные функции для частотно-временного анализа должны обладать следующими свойствами. Ограниченность, т.е. принадлежность L2 . Локализация. Базисные функции вейвлет - анализа, в отличие от преобразования Фурье, должны быть локализованы, т.е. ...

Скачать
30627
1
3

... непосредственно связаны с кратномасштабным анализом сигналов. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Эти функции могут быть симметричными, асимметричными и несимметричными. Различают вейвлеты с компактной областью определения и не имеющие таковой. Некоторые функции имеют аналитическое выражение, другие – быстрый алгоритм вычисления связанного с ними вейвлет. ...

Скачать
31275
0
4

... плата ввода/вывода. Она необходима для подключения дополнительного оборудования, сбора информации с датчиков и обрабатывание ее. ПРИМЕНЕНИЕ. Системы "машинного зрения" применяются в следующих областях промышленности: ·           Автомобилестроение. ·           Электроннике. ·           Медицинской и фармацевтической. ·           Машиностроении. ·           Робототехнике. ·           ...

Скачать
44432
0
7

... 671 с 7.Короновский А.А., Непрерывный вейвлетный анализ и его приложения / А.А. Короновский, А.Е. Храмов — М. : Физматлит, 2003. — 176 с. </p> <h3>Методические указания</h3> <p> 1. С.Г. Антощук, А.О. Ніколенко Конспект Лекцій по курсу " Методи та засоби комп’ютерних інформаційних технологій" (Електронна версія) , 2005р.</p> <p>2. Методичні рекомендації до ...

0 комментариев


Наверх