2. Устойчивость решения автономной системы. Устойчивость решения системы линейных дифференциальных уравнений с постоянными коэффициентами.
Система обыкновенных дифференциальных уравнений называется автономной (или стационарной, или консервативной, или динамической), если независимая переменная не входит явно в систему уравнений.
Нормальную автономную систему n - го порядка можно записать в векторной форме :
dx / dt = f ( x ). (5)
Рассмотрим задачу Коши для системы (5) с начальными условиями (2). В дальнейшем предполагаем, что задача Коши (5), (2) удовлетворяет условиям теоремы существования и единственности.
Пусть x = x ( t ) - есть решение системы (5). Направленная кривая g , которую можно параметрически задать в виде xi = xi ( t ) ( i = 1, ... , n ), называется траекторией (фазовым графиком) системы (5) или траекторией решения x = x ( t ). Пространство Rn с координатами ( x1 , ... , xn ), в котором расположены траектории системы (5), называется фазовым пространством автономной системы (5). Известно, что интегральные кривые системы (5) можно параметрически задать в виде t = t , x1 = x1 ( t ), ... , xn = xn ( t ). Следовательно, интегральная кривая принадлежит пространству Rn+1 с координатами ( t , x1 , x2 , ... , xn ) , а траектория является проекцией интегральной кривой на пространство Rn параллельно оси t. Проиллюстрируем это для случая n = 2 , т.е. когда Rn+1 - трехмерное пространство, а фазовое пространство Rn - двумерная плоскость. На рис.8,а изображена интегральная кривая, заданная параметрическими уравнениями t = t, x1 = x1 ( t ) , x2 = x2 ( t ), на рис.8,б - ее проекция на плоскость, т.е. траектория, заданная параметрическими уравнениями x1 = x1 ( t ) , x2 = x2 ( t ). Стрелкой указано направление возрастания параметра t.
Определение 5. Точка ( a1, a2 , ... , an ) называется точкой покоя (положением равновесия) автономной системы (5), если правые части f1 , f2 , ... , fn системы (5) обращаются в этой точке в нуль, т.е. f (a) = 0, где a = ( a1 , a2 , ... , an ) , 0 = ( 0 , 0 , ... , 0 ) .
Если ( a1 , ... , an ) - точка покоя, то система (5) имеет постоянное решение x ( t ) = a. Как известно, исследование устойчивости любого, а значит, и постоянного решения a можно свести к исследованию устойчивости нулевого решения. Поэтому далее будем считать, что система (5) имеет нулевое решение x ( t ) º 0 , т.е. f ( 0 ) = 0, и точка покоя совпадает с началом координат фазового пространства Rn. В пространстве Rn+1 точке покоя соответствует нулевое решение. Это изображено на рис.8 для случая n = 2.
Таким образом, устойчивость нулевого решения системы (5) означает устойчивость начала координат фазового пространства системы (5), и наоборот.
Дадим геометрическую интерпретацию устойчивого, асимптотически устойчивого и неустойчивого начала плоскости, т.е. когда n = 2. Для этого следует спроектировать аналоги рис.5-7 в двумерном случае на фазовую плоскость R2, причем проекциями e - трубки и d - трубки являются окружности с радиусами e и d . Начало x = 0 устойчиво, если все траектории, начинающиеся в пределах d - окружности, не покидают e - окружность " t ³ t0 (рис.9) ; асимптотически устойчиво, если оно устойчиво и все траектории, начинающиеся в области притяжения D , стремятся к началу (рис.10) ; неустойчиво, если для любой e - окружности и всех d > 0 существует хотя бы одна траектория, покидающая ее (рис.11).
Нормальная система линейных дифференциальных уравнений с постоянными коэффициентами, имеющая вид
dx / dt = A x, (6)
где A - постоянная матрица размера n ´ n , является частным случаем системы (5). Следовательно, для этой системы справедливы все сделанные выше утверждения об автономных системах.
3. Простейшие типы точек покоя.
Пусть имеем систему дифференциальных уравнений
æ dx / dt = P ( x , y ),
í (A)
î dy / dt = Q ( x , y ).
Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.
Рассмотрим систему
æ dx / dt = a11 x + a12 y,
í (7)
î dy / dt = a21 x + a22 y.
где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде
x = a 1 e k t , y = a 2 e k t . (8)
Для определения k получаем характеристическое уравнение
a11 - k a12
= 0. (9)
a21 a22 - k
Рассмотрим возможные случаи.
I. Корни характеристического уравнения действительны и различны. Подслучаи :
1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло).
4) k1 = 0, k2 > 0. Точка покоя неустойчива.
5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически.
II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :
1) p < 0 , q ¹ 0. Точка покоя асимптотически устойчива (устойчивый фокус).
2) p > 0 , q ¹ 0. Точка покоя неустойчива (неустойчивый фокус).
3) p = 0, q ¹ 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.
III. Корни кратные: k1 = k2 . Подслучаи :
1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.
Для системы линейных однородных уравнений с постоянными коэффициентами
dxi n
= å ai j xj ( i = 1 , 2 , ... , n ) (10)
dt i=1
характеристическим уравнением будет
a11 - k a12 a13 ... a1n
a21 a22 - k a23 ... a2n = 0. (11)
. . . . . . . .
an1 an2 an3 ... ann - k
1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t ) º 0 ( i = 1 , 2 , ... , n ) асимптотически устойчива.
2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t ) º 0 ( i = 1, 2, ... n ) системы (10) неустойчива.
3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t ) º 0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически.
Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами
.
æ x = a11 x + a12 y,
í . (12)
î y = a21 x + a22 y
характеристическое уравнение (9) приводится к виду
k2 + a1 k + a2 = 0.
1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво.
2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2 > 0 , то нулевое решение устойчиво, но не асимптотически.
3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически.
4. Критерий устойчивости Михайлова.
Частотные критерии устойчивости получили наиболее широкое практическое применение, так как, во-первых, они позволяют судить об устойчивости замкнутой системы по более простой передаточной функции системы W ( s ) ; во-вторых, анализ устойчивости можно выполнять и по экспериментально определенным частотным характеристикам; в-третьих, с помощью частотных характеристик можно судить и о качестве переходных процессов в системе.
А.В. Михайлов первым предложил использовать развитые в радиотехнике Найквистом частотные методы для анализа устойчивости линейных систем регулирования. Сформулированным им в 1938 г. критерий устойчивости назвали его именем. Рассмотрим существо этого критерия.
Пусть характеристическое уравнение замкнутой системы имеет вид
D ( l ) = l n + a1 l n-1 + a2 l n-2 + ... + an = 0. (13)
Зная его корни l 1 , l 2 , ... , l n , характеристический многочлен для уравнения (13) запишем в виде
D ( l ) = ( l - l 1 ) ( l - l 2 ) ... ( l - l n ). (14)
Рис.12. Векторное изображение сомно-жителей характерис-тического уравнения замкнутой системы на плоскости :
а - для двух корней l и l i ;
б - для четырех корней l 1 , l ‘1 , l 2 , l ‘2
Графически каждый комплексный корень l можно представить точкой на плоскости. Поэтому, в свою очередь, каждый из сомножителей уравнения (14) можно представить в виде разности двух векторов ( l - l i ), как это показано на рис.12,а. Положим теперь, что l = j w ; тогда определяющей является точка w на мнимой оси (рис.12,б). При изменении w от - ¥ до + ¥ векторы j w - l 1 и j w - l ‘1 комплексных корней l и l ‘1 повернуться против часовой стрелки, и приращение их аргумента равно + p , а векторы j w - l 2 и j w - l ‘2 повернутся по часовой стрелке, и приращение их аргумента равно - p . Таким образом, приращение аргумента arg( j w - l i ) для корня характеристического уравнения l i , находящегося в левой полуплоскости, составит + p , а для корня, находящегося в правой полуплоскости, - p . Приращение результирующего аргумента D arg D( j w ) равно сумме приращений аргументов его отдельных сомножителей. Если сре1ди n корней характеристического уравнения m лежит в правой полуплоскости, то приращение аргумента составит
D arg D( j w ) = ( n - m ) p - m p = ( n - 2m ) p . (15)
- ¥ < w < ¥ для левой для правой
полуплоскости полуплоскости
Отметим теперь, что действительная часть многочлена
D ( j w ) = ( j w )n + a1 ( j w )n-1 + a2 ( j w )n-2 + ... + an (16)
содержит лишь четные степени w , а мнимая его часть - только нечетные, поэтому
arg D ( j w ) = - arg D ( -j w ), (17)
и можно рассматривать изменение частоты только на интервале w от 0 до ¥ . В этом случае приращение аргумента годографа характеристического многочлена
D arg D( j w ) = ( n - 2m ) p / 2 . (18)
0 £ w < ¥
Если система устойчива, то параметр m = 0, и из условия (18) следует, что приращение аргумента
D arg D( j w ) = n p / 2 . (19)
0 £ w < ¥
На основании полученного выражения сформулируем частотный критерий устойчивости Михайлова: для того чтобы замкнутая система автоматического регулирования была устойчива, необходимо и достаточно, чтобы годограф характеристического многочлена в замкнутой системе (годограф Михайлова) начинался на положительной части действительной оси и проходил последовательно в положительном направлении, не попадая в начало координат, n квадрантов комплексной плоскости ( здесь n - порядок характеристического уравнения системы).
Рис.13. Примеры годографов Михайлова для различных характеристических уравнений замкнутых систем:
а - устойчивые системы при n = 1 - 6 ; б - неустойчивые системы при n = 4 и различных параметрах
Соответствующие устойчивым системам годографы Михайлова для уравнений различных порядков построены на рис. 13,а. На рис. 13,б построены годографы Михайлова для неустойчивых систем при n = 4.
... строки. Очевидно, что такая операция не изменит знака членов следующей строки и не отразится на конечном результате. Например, элементы третьей строки таблицы (45) можно было бы разделить на 8 для упрощения последующих вычислений. Анализ результатов устойчивости в нелинейных системах. При исследовании устойчивости в цепях постоянного тока при малых возмущениях обнаружение неустойчивости ...
... начальным условиям . Пусть — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где . 2. Устойчивость решений систем дифференциальных уравнений. 2.1. Устойчивость по Ляпунову. Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует ...
... владеет Украина, является одним из важнейших измерений ее миссии. То, что она призвана дать мировому сообществу будущего, с точки зрения общечеловеческого развития, становится глобальной миссией Украины. Интерпретация устойчивого развития по М. Руденко позволяет определять наиболее ценные из интеллектуальных достижений, которые должны передаваться потомкам, и формулировать требования к ним. Так, ...
... были определены для всех подставляемых в них значений аргументов. Таким образом, точка с координатами должна принадлежать множеству для всех значений на интервале . Устойчивость по Ляпунову Рассмотрим систему дифференциальных уравнений (??) Выделим некоторое решение системы (??) и назовем его невозмущенным решением. Решение назовем устойчивым в смысле Ляпунова ...
0 комментариев