3.4. Почему галактики разные
Как только галактики были открыты, астрономы пытались установить, под действием каких процессов галактики принимают ту или иную форму. В некоторых из ранних теорий предполагалось, что разные типы галактик представляют собой эволюционную последовательность. Согласно одной из таких гипотез, галактики начинают свой эволюционный путь как эллиптические, потом у них развивается спиральная структура и, наконец, эта структура распадается и объект превращается в хаотическую неправильную галактику. Другие астрономы предполагали противоположное направление эволюции: галактики возникают как неправильные, закручиваясь, превращаются в спиральные и завершают свою эволюцию в простой и симметричной эллиптической форме. В основе обеих теорий была гипотеза о том, что тип галактики связан с ее возрастом. Обе гипотезы были опровергнуты. Оказалось, что галактики всех типов имеют примерно одинаковый возраст. Почти в каждой галактике присутствует хотя бы несколько звезд с возрастом в несколько миллиардов лет. Отсюда следует, что ни эллиптические, ни неправильные галактики не могут быть старше остальных.
Однако эллиптические галактики состоят почти исключительно из старых звезд, в то время как галактики других хаббловских типов содержат относительно больше молодых звезд. По-видимому, форма галактики связана со скоростью образования в ней новых молодых звезд уже после ее рождения, а, следовательно, и с распределением звезд по возрастам. В эллиптических галактиках очень мало звезд возникло после стадии образования галактики, и поэтому мы наблюдаем здесь ничтожное количество молодых звезд. В галактиках типа Sa звезды продолжают образовываться до сих пор, но скорость этого процесса невелика, в галактиках типа Sb темп звездообразования выше, галактики типа Sc очень активны, а наиболее бурно звездообразование протекает в галактиках типа Irr I.
Эти результаты навели исследователей на мысль о том, что последовательность хаббловских типов упорядочивает галактики по степени сохранения ими газа и пыли: неправильные галактики сберегли большую часть своего газа и своей пыли для постепенного рождения все новых и новых звезд, в то время как эллиптические галактики израсходовали почти весь свой исходный газ на первую взрывную вспышку звездообразования.
4. Размеры и расстояния галактик
Космос населяют миллиарды галактик и им совсем не тесно. Вселенная достаточно огромна, чтобы галактики могли удобно в ней разместиться, и при этом еще остается много свободного пространства. Когда речь идет о галактиках, то обычно используют две единицы длины - световой год и парсек. Световой год равен расстоянию, которое свет проходит за год (около 10 миллионов миллионов километров). Парсек - это необычная единица длины, определяемая через видимое перемещение (параллакс) объекта на фоне неба, вызванное движением Земли по орбите вокруг Солнца. В одном парсеке 3,26 световых года, 1000 парсеков (пс) составляют 1 килопарсек (кпс), а 1000000 парсеков - 1 мегапарсек (Мпс).
Типичное расстояние между яркими галактиками составляет около 5-10 миллионов световых лет; оставшийся объем занимают карликовые галактики. Галактики довольно редко разбросаны во Вселенной и состоят, в основном, из пустого пространства. Даже если учесть разреженный газ, заполняющий пространство между звездами, то все равно средняя плотность вещества оказывается чрезвычайно малой. Мир галактик огромен и почти пуст.
Среди галактик, как и среди звезд, можно встретить галактики-карлики, галактики средней светимости, галактики-гиганты и галактики-сверхгиганты. Наша Галактика, а также Туманность Андромеды (NGC 224), которую можно наблюдать на небе невооруженным глазом, относятся к сверхгигантским галактикам. Такие выдающиеся по светимости, размерам и числу звезд галактики попадаются не более одной на тысячу галактик.
В таблице 1 приведены данные о десяти ярчайших галактиках неба.
В списке ярчайших галактик фигурируют сверхгигантские галактики NGC 4594 и NGC 253, их светимость даже больше светимости Туманности Андромеды. Но это уже сравнительно удаленные звездные системы. Еще более выдающимися сверхгигантами, чемпионами по светимости, являются две галактики, NGC 4874 и NGC 4889, находящиеся в центре скопления галактик в созвездии Волос Вероники. Их абсолютная звездная величина равна -22m . Следовательно, каждая из них светит как сеть галактик, подобных нашей. Сверхгигантскими принято считать такие галактики, абсолютные звездные величины (М) которых меньше чем -19m,0, а к числу гигантских относят галактики с -19m,0<M<-17m,0. Все ярчайшие галактики, кроме Малого Магеланова Облака, относятся к сверхгигантским или гиганстким галактикам. Галактики средних светимостей и галактики-калики в числе ярчайших, несмотря на их близость, не попадают. Галактики средних светимостей имеют -17m,0<M<-15m,0, а у карликов абсолютная звездная величина больше -15m,0. Очень многочисленны карликовые галактики с М=-14m,0 и -13m,0.
Таблица1 Десять ярчайших галактик
Название или № по NGC | Видимая звездная величина | Тип | Расстояние (кпс) | Абсолютная звездная величина | Угловые размеры в минутах дуги |
Большое Магеланово Облако | 1m,2 | Irr II | 46 | -17m,4 | 780 |
Малое Магелоново Облако | 2m,8 | Irr II | 46 | -16m,0 | 180 |
Туманность Андромеды | 4m,3 | Sb | 460 | -19m,8 | 197x92 |
598 | 6m,0 | Sc | 480 | -17m,6 | 83x53 |
253 | 7m,6 | Sc | 4200 | -21m,4 | 30x5 |
55 | 7m,8 | Sc | 1900 | -19m,1 | 24x6 |
5236 | 8m,0 | Sc | 1800 | -19m,1 | 10x8 |
3031 | 8m,1 | Sb | 1540 | -18m,7 | 16x10 |
4594 | 8m,6 | Sb | 5000 | -20m,7 | 7x1,5 |
5457 | 8m,6 | Sb | 1800 | -18m,5 | 22x22 |
В 20-х годах нашего столетия Э.Хаббл приступил к разработке программы построения шкалы расстояний, простирающейся до края наблюдаемой Вселенной (рис. 2).
Первой задачей Хаббла было определение расстояний до членов Местной группы галактик, в которую входят наша Галактика и ее ближайшие соседи. Особое внимание он уделил галактикам М 31, М 33 и NGC 6822, где им были открыты цефеиды (звезды с переменной яркостью). Результаты Хаббла для этих трех галактик образовали базу и первую ступень трехступенчатой хаббловской шкалы расстояний во Вселенной. Расстояния до галактик Местной группы до сих пор остаются фундаментом большинства шкал расстояний.
Далее план Хаббла состоял в использовании близких галактик и их расстояний для калибровки светимостей более ярких объектов с тем, чтобы измерять расстояния до более далеких областей пространства. Испробовав объекты разных типов, включая красные гиганты, звездные скопления и др. Хаббл обнаружил, что максимальные светимости ярчайших звезд во всех галактиках довольно одинаковы и мало меняются
при переходе от одной галактики к другой. Следовательно, видимый блеск самых ярких звезд галактики зависит от расстояния до галактики от наблюдателя. Большая коллекция фотографий многочисленных галактик с разрешаемыми ярчайшими звездами дала Хабблу в руки доказательства обоснованности его подхода. Хаббл собрал оценки блеска ярчайших звезд в большом списке галактик и в качестве второго шага прокалибровал расстояний до них, сравнивая эти значения блеска со светимостями самых ярких звезд в галактиках Местной группы, расстояния до которых были известны. Далее на третьем шаге он применил эти значения светимостей к еще более далеким галактикам за пределом, где разрешаются отдельные звезды.
В этот же период Э.Хаббл, В.Слайфер, М.Хьюмасон и другие астрономы занимались фотографированием спектров галактик и обнаружили, что некоторые из галактик, согласно результатам измерений доплеровского смещения спектральных линий, движутся с поразительными скоростями. Эффект Доплера представляет собой изменение длины волны наблюдаемого света от объекта, который приближается к наблюдателю или удаляется от него. Если объект приближается, то возникает фиолетовое смещение, а если удаляется, то красное. Э.Хаббл показал, что скорость относительного движения галактик прямо пропорциональна расстоянию между ними (рис. 3). Почти у всех галактик наблюдались красные смещения, что говорило о том, что они от нас удаляются. И только галактики Местной группы имели фиолетовое смещение. Например, средняя скорость удаления от галактик скопления в созвездии Девы составляет 1000 км/с. В настоящее время астрономы обнаружили объекты, удаляющиеся со скоростями, равными 80 и более процентов скорости света. Связь между скоростями галактик и расстояниями до них известна под названием закона Хаблла Vr = HD, (2)
где - Vr - лучевая скорость удаления галактики;
Н - постоянная Хаббла;
D - расстояние до галактики.
рис. 3. Зависимость Хаббла между скоростью удаления галактик
и расстоянием до них
Сейчас исследователи постоянную Хаббла обычно обозначают как Н0 - индекс говорит о том, что речь идет о современном значении, так как в прошлом величина постоянной могла быть иной.
Значительное событие на пути к надежной шкале расстояний во Вселенной произошло в 1958 г., когда американский астроном Алан Сэндидж продемонстрировал некоторые результаты по этой проблеме, полученные с помощью 200-дюймового телескопа, установленного на горе Паломар. Переработав исходную хаббловскую выборку галактик при помощи большого телескопа и новых методов, А.Сэндидж нашел в предыдущих работах несколько грубых ошибок, особенно в определении самых ярких звезд в галактиках. Результаты, полученные Сэндиджем, привели к шкале расстояний в семь раз превосходящей хаббловскую шкалу 1936 года. Сэндидж, например, установил, что скопление в созвездии Девы удалено на 50 млн. световых лет, а не на 7 млн. световых лет, которые оценил Хаббл. Вся Вселенная оказалась намного обширнее, чем считалось ранее.
Важным элементом последнего шага на пути к шкале расстояний во Вселенной является классификация галактик по светимостям, разработанной в 1960 г. Сидней Ван ден Бергом. Критерии светимости Ван ден Берга как бы расслаивают галактики в перпендикулярной плоскости по отношению к классификации Хаббла. Спиральная галактика определенного хаббловского типа, например Sc, может быть отнесена к любому из классов Ван ден Берга - от I до IV. При этом чем меньше номер класса, тем больше светимость соответствующей галактики. Калибровка по галактикам с известной светимостью показала, что объекты I класса имеют примерно в 5 раз большую светимость, чем объекты IV класса того же хаббловского типа. Хотя классификация Ван ден Берга носит качественный характер, многие астрономы, основываясь на результатах тестовых исследований, говорят о возможности ее применения для получения количественных оценок светимостей, свободных от систематических погрешностей.
Сэндидж использовал эту классификацию, прокалибровав ее на материале близких групп, и определил расстояния до 60 далеких галактики высокой светимости со скоростями в интервале от 3000 до 15500 км/с. Сравнение расстояний со скоростями дало ученым ответ: постоянная Хаббла еще меньше (а, следовательно, размеры Вселенной еще больше), чем считалось до этого. Если Хаббл получил для Н0 значение равное 160 км/(с*миллион световых лет), а Сэндидж в 1958 г. - 23 км/(с*миллион световых лет), то теперь Сэндидж говорил о величине в 15 км/(с*миллион световых лет) с погрешность, оцениваемой в 10%.
Необходимо отметить, что существует и другой подход по решению задачи построения шкалы расстояний галактик. Французский астроном Жерар де Вокулер отверг принципы и в значительной степени изменив методики Хаббла и Сэндиджа и получил существенно отличные результаты. Де Вокулер при определении постоянной Хаббла использовал 13 индикаторов расстояния в отличие от Сэндиджа, который использовал пять. Результатом на больших расстояниях явилась почти в точности в два раза более короткая, чем у Сэндиджа, шкала расстояний. Это значит, что размер Вселенной де Вокулера составляет всего половину размера Вселенной Сэндиджа, а его постоянная Хаббла в два раза больше, чем у Сэндиджа.
... им явление тем, что наблюдаемые нами звезды образуют гигантскую звездную систему, которая сплюснута к галактическому экватору. И все же, хотя вслед за Гершелем исследованием строения нашей звездной системы - Галактики занимались известные астрономы - В. Струве, Каптейн и другие. Само представление о существовании Галактики как обособленной звездной системы являлось до тех пор, пока не были ...
... . До ее границ пока не могут проникнуть даже самые мощные телескопы. Итак, известная нам в настоящее время часть Вселенной — только часть Метагалактики, в которой наша Галактика занимает положение рядовой звездной системы. Кто знает, может быть, и Метагалактика является членом еще более грандиозной системы. Вообще звездных систем в бесконечной Вселенной бесчисленное множество. Самая большая ...
... путь). Иными словами, человек, проводящий многие часы лежа на диване, объективно живет меньше человека путешествующего, занимающегося спортом, т.е. активного в обществе и пространстве. Масштаб времени социальных систем Социальные системы состоят из индивидуальных биосистем homо sapiens. Поведенческие особенности каждого индивидуума всецело определяются его способностями адаптации к данной ...
аются буквой S. Среди близких галактик спиральные составляют несколько больше 60 %. Их отличает наличие двух (а иногда и больше) спиральных рукавов, образующих плоскую систему-"диск". Помимо диска в S-галактнках имеется так называемая сферическая составляющая. Она образуется объектами, которые располагаются примерно сферически-симметрично вокруг центра галактики. В спиральных рукавах ...
0 комментариев