3.2 Уравнения движения

На прыгуна в полете действуют две основные силы: аэродинамическая сила и сила тяжести. Разложим аэродинамическую силу на две составляющие - подъемную силу и силу лобового сопротивления (см. рис.3) - и запишем второй закон Ньютона для центра масс системы лыжник-лыжи:

, (1)

где  - сила тяжести;

- масса системы прыгун-лыжи;

- ускорение центра масс системы;

- ускорение свободного падения;

 - подъемная сила;

В подобных случаях под набегающим потоком воздуха понимается скорость воздуха относительно системы лыжник-лыжи. При старых техниках прыжка (см. рис. 3), когда корпус лыжника находился на относительно большом расстоянии от лыж, необходимо было рассматривать отдельно угол атаки корпуса, ног, рук и лыж [1], но при современных техниках и особенно при так называемом V-стиле, когда прыгун раздвигает лыжи и ложится между ними, становясь как бы треугольным крылом, можно приближенно считать, что лыжник и лыжи находятся в одной плоскости и рассматривать один угол атаки - угол атаки всей системы в целом.

Вернемся к началу этой главы. Для силы лобового сопротивления (2) и подъемной силы (3) существуют и другие выражения [6,7]:

, (9)

, (10)

где - плотность воздуха, - коэффициент силы лобового сопротивления,

 - коэффициент подъемной силы,  - площадь миделя (площадь сечения системы прыгун-лыжи в плоскости, перпендикулярной набегающему потоку воздуха). Если считать, что лыжник и лыжи находятся в одной плоскости, то площадь миделя при заданном угле атаки определяется следующим образом:, где  - площадь миделя при угле атаки 900. Угол атаки складывается из угла между горизонталью и скоростью и угла между горизонталью и лыжами (рис. 4).

Система дифференциальных уравнений (7) с аэродинамическими коэффициентами, вычисляемыми в каждый момент времени по формулам (14), (15), образует замкнутую систему уравнений. Если к ней добавить начальные условия (8), данная задача будет являться задачей Коши.

В заключение приводится сравнение реальных аэродинамических коэффициентов прыгунов 60-х и нашей оценки. Криаая А на рис. 6 изображает полученную нами зависимость между коэффициентом подъемной силы и коэффициентом лобового сопротивления, а кривая В - аналогичную зависимость, полученную из экспериментальных зависимостей аэродинамических коэффициентов от угла атаки [1]. Видно, что вид зависимости коэффициентов друг от друга слабо отличается, и коэффициент подъемной силы в нашей работе выше, чем в

Рис. 6. Зависимость коэффициента подъемной силы от коэффициента сопротивления с углом атаки в качестве параметра (кривая А - наша оценка, кривая В - эксперименты в аэродинамической трубе с моделями прыгунов, использующих старую технику прыжка).

Рис. 7. Зависимость коэффициентов силы лобового сопротивления и подъемной силы от угла атаки.

экспериментах тридцатилетней давности. Это хорошо согласуется с тем фактом, что за прошедшие годы прыгуны научились развивать большую подъемную силу. Также если сравнить полученные нами графики зависимости аэродинамических коэффициентов от угла атаки (рис. 7) с аналогичными графиками в [1] на страницах 10-11, 13-14 и 15-16, видно, что вид зависимости сохранился.

 - сила лобового сопротивления.

Рис. 3. Система координат и основные силы, действующие на прыгуна в полете.

Сила лобового сопротивления направлена по касательной к траектории противоположно скорости и пропорциональна квадрату модуля скорости: , (2)

 а подъемная сила направлена по нормали к траектории и по модулю равна: , (3)

где коэффициент  [6]. Коэффициент  определяется предельной скоростью системы лыжник-лыжи :

. (4)

Предельная скорость - это скорость установившегося свободного падения тела в воздухе.

Спроецировав (1) на оси координат, путем несложных преобразований приходим к дифференциальным уравнениям движения:

(5)

Понизим порядок системы:

(6)

Следует также помнить, что воздушная среда находится в движении, в воздухе вокруг трамплинной горы задано векторное поле скоростей ветра. То есть все предыдущие уравнения записаны для относительных скоростей и их следует переписать для абсолютных скоростей.

(7)

где  - горизонтальная, а  - вертикальная составляющая скорости ветра.

Начальные условия:

(8)

Очевидно, что в общем случае задача если и решается аналитически, то очень сложно, поэтому целесообразнее решать ее численно. Критерием окончания расчета будет служить выполнение одного из следующих условий:

пересечение траектории со склоном горы;

вылет прыгуна за пределы участка приземления:.

Рассмотрим коэффициенты  и. В простейшей модели можно положить их постоянными, как сделано, например, в работе [4]. Однако в действительности эти коэффициенты зависят от ориентации лыжника в воздухе и от его позы. Но у нас есть достаточно оснований считать позу лрыгуна постоянной в полете, такое допущение сделано не только в этой работе, но и в работах [2 - 4]. Ориентацию же лыжника в пространстве определяет угол атаки системы прыгун-лыжи, то есть угол между плоскостью системы и скоростью набегающего потока воздуха. Здесь и далее в

Рис. 4. Определение угла атаки системы лыжник-лыжи

(- угол между лыжами и горизонталью, - угол между скоростью и горизонталью, - угол атаки).

Как видно из кинограмм прыжков, приводимых, например, в [1], и из наблюдений за прыгунами, угол между лыжами и горизонталью в полете практически не меняется, меняется лишь угол между скоростью и горизонталью. Тогда, учитывая выражения (2) и (9), можно записать:

. (11)

Из рис. 4 видно, что

. (12)

Аэродинамические коэффициенты  и  можно найти из опытов в аэродинамической трубе. Однако в настоящее время мы не располагаем этими данными для современных техник прыжка, поэтому в данной работе используется лишь оценка аэродинамических коэффициентов. Рассмотрим лыжника и окрыжающий его воздух. Если рассмотреть воздух, как идеальный газ, состоящий из круглых упругих частичек, то согласно теории удара аэродинамическая сила будет направлена по нормали к поверхности лыж (см. рис. 5).

Рис. 5. Подъемная сила и сила лобового сопротивления в потоке идеального газа

(- полная аэродинамическая сила, составляющими которой являются сила лобового сопротивления и подъемная сила).

Угол между скоростью и лыжами - это угол атаки . То есть коэффициент

(13)

Окончательно имеем следующие выражения для  и :

(14)

где

(15)

В формуле (14)  - это угол отрыва, то есть угол, под которым траектория наклонена к горизонтали в начальный момент времени. Минус поставлен потому, что . Под  понимается предельная скорость системы лыжник-лыжи в момент отрыва (в начальный момент времени).


Информация о работе «Математическое моделирование полета лыжника при прыжке с трамплина»
Раздел: Математика
Количество знаков с пробелами: 31890
Количество таблиц: 0
Количество изображений: 18

Похожие работы

Скачать
11197
1
9

... . Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений. Целью данной курсовой работы является моделирование движения снаряда. модель параметр движение снаряд Постановка задачи   Снаряд пущен с Земли с начальной скоростью v0 под углом  к ее поверхности; требуется найти траекторию его движения (y), расстояние S между ...

0 комментариев


Наверх