3.5 Зависимость положения максимума внешнего пояса энергичных электронов от цикла солнечной активности

По данным измерений в 19-м цикле солнечной активности максимум внешнего пояса электронов (Lmax) и зазор между поясами отодвигались к большим L при переходе от максимума цикла к минимуму (Vernov et al., 1969).

На рис.14 представлен временной ход Lmax за период 1958- 1983 гг. (Tverskaya, 1996). Приведены также бури с амплитудой Dst-вариации <100 нТл, среднемесячные значения Dst и число солнечных пятен Rz.

Видно, что нет прямой корреляции Lmax с солнечной активностью, а основное влияние на его положение оказывают магнитные бури. Для нескольких лет непрерывных данных ИСЗ Молния и Метеор коэффициент корреляции Lmax с Rz составил -0.2. В то же время коэффициент корреляции Lmax со среднемесячным значением Dst составил -0.7.

Наблюдается интересная особенность при сопоставлении ежемесячных непрерывных данных по Lmax (ИСЗ Метеор) с Dst в 1978- 1983 гг.: активизация магнитных бурь до и после максимума солнечной активности и соответствующее смещение Lmax к меньшим L.

3.6 Электронные радиационные пояса во время сильных магнитных бурь

Структура магнитосферы и радиационных поясов определяется взаимодействием магнитосферы с солнечным ветром. Во время солнечных вспышек Солнце выбрасывает «корональные выбросы масс» (КВМ), которые отличаются большой скоростью (до 2000 км/с), большой плотностью (до нескольких десятков частиц в кубическом сантиметре), большим магнитным полем (до нескольких десятков нанотесла) на орбите Земли. Когда КВМ проходят Землю, магнитосфера резко уменьшается в размерах, уменьшается область замкнутых дрейфовых оболочек (радиационных поясов), ночной плазменный слой приближается к Земле и ток в нем увеличивается, увеличивается также магнитное поле в хвосте магнитосферы. Частицы радиационных поясов, находившиеся на внешних оболочках, выбрасываются из магнитосферы. Эти процессы протекают по-разному при разных направлениях магнитного поля КВМ (параллельном или антипараллельном геомагнитному полю). Токи, вызывающие Dst вариацию, более сильны при отрицательном Bz компоненте межпланетного поля при прочих равных условиях. В качестве примера мы рассмотрим динамику внешнего пояса во время двух сильных бурь: 24 марта 1991 г. и 6 ноября 2001 г.

Буря 24 марта 1991 г. Она была вызвана КВМ, эжектированным солнечной вспышкой 22 марта в 16 ч 20 м.

В момент гигантского SSC (~200 нТл) сформировался «ударный» пояс ультрарелятивистских электронов (см. раздел 2.2).

Эволюция этого пояса во время последовавшей сильной магнитной бури (|Dst|max~300 нТл) и инжекция нового «буревого» пояса проанализированы в (Tverskaya et al., 2003b).

На рис. 15 представлена динамика радиального профиля пояса электронов с Ee>8 МэВ (ИСЗ Метеор), появившегося во время гигантского SSC 24 марта 1991 г. Моменты пролета спутника и положение максимумов пояса указаны на графике Dst-вариации. В ~05 UT 24 марта пик пояса электронов с Ее>8 МэВ находился на L~2.8. Во время главной фазы магнитной бури пояс сместился на L~2.3. Эта вариация оказалась необратимой.

На рис. 16 представлено распределение интенсивности электронов разных энергий для трех временных периодов: 24.03.91 (до SSC), 25.03.91 (в начале фазы восстановления бури) и 27.03.91 (через два дня после максимума бури). Перед бурей хорошо виден зазор между поясами. Показания детектора, регистрировавшего электроны с Ее>8 МэВ, находятся на уровне фона. На следующем пролете 25.03.91 на L~2.3 имеется пик интенсивности инжектированных во время SSC электронов, и сформировался ещё один новый пояс инжектированных во время бури электронов с максимумом на L~3. Данные ИСЗ CRRES также показывают появление после этой бури пояса электронов с Ее~2 МэВ с максимумом на L=3.1 (Ingraham et al., 1996).

Наблюдается запаздывание в появлении более энергичных электронов. Это хорошо соответствует более ранним результатам исследования инжекции электронов во время бурь (Williams et al., 1968). В дальнейшем может сформироваться максимум в спектре электронов внешнего пояса в области энергий 1 – 3 МэВ (Вакулов и др., 1975, West et al., 1981).

Буря 6 ноября 2001 г. Для бури 6 ноября (Tverskaya et al., 2005; Кузнецов и др., 2006) имеются данные по условиям в межпланетном пространстве. Буря была вызвана КВМ, эжектированным солнечной вспышкой 4 ноября в 16 ч. 20 м.

На рис. 17 (Кузнецов и др., 2006) на верхней панели приведены данные о положении лобовой точки магнитопаузы, вычисленные по модели (Кузнецов и др., 1998), и измеренная на ИСЗ КОРОНАС-Ф граница проникновения электронов солнечных энергичных частиц (СЭЧ) с Ее=0.3-0.6 МэВ с ночной стороны. В основном – это внутренняя граница плазменного слоя. Иногда мы видим резкое увеличение L границы проникновения электронов, возможно в это время происходит диполизация магнитного поля в хвосте магнитосферы. На средней панели представлены Bz и Р, индексы, определяющие размеры магнитосферы и магнитные возмущения. На нижней панели представлены Hsym - минутный аналог Dst вариации и АЕ – индекс авроральной активности.

Внезапное начало магнитной бури наблюдалось 6 ноября в 1 ч 52 м. Через несколько минут началась главная фаза бури, которая длилась около полутора часов. Магнитосфера в это время имела минимальные размеры, X(0) ~ 4Rз. При возрастании Bz и сохранении Р на одном уровне X(0) ~ 6Rз. В это время около 5 часов Hsym практически не изменялось. Именно в это время было измерено состояние пояса (см. рис.18 пунктир). Мы видим, что поток электронов всех энергий во внешнем поясе резко уменьшился по сравнению с потоками, измеренными 5 ноября. К сожалению, фоновый поток протонов СЭЧ в каналах электронов 0.6-1.5. 1.5-3, 3-6 МэВ мешает точно определить масштаб вариации. Для электронов 0.3-0.6 МэВ профиль пояса сместился на меньшие L по сравнению с профилем, полученным 5 ноября, и поток электронов уменьшился.

Отметим, что новый максимум пояса совпадает с минимальным значением L, которого достигала граница проникновения солнечных электронов при Hsym< -300 нТл. На следующий день пояс с максимумом на L~3 начал формироваться и для электронов более высоких энергий. Аналогичная картина инжекции наблюдалась и на больших высотах (Тverskaya et al., 2005). В дальнейшем на L~3 снова формируется зазор между поясами для электронов 0.3-0.6 МэВ.

Для обеих бурь значение Lmax близко к тому, что дает эмпирическая зависимость Lmax от максимальной амплитуды Dst вариации бури (Тверская, 1986).


Информация о работе «Радиационные пояса»
Раздел: Математика
Количество знаков с пробелами: 60015
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
24653
10
5

... с высокой эффективностью выделять потоки электронов и позитронов с энергией более 40 МэВ [3]. Орбита станции “Салют-6” (высота 350-400 км, наклонение 52°) в основном проходила ниже радиационного пояса Земли, но в районе Бразильской магнитной аномалии она задевала внутреннюю часть РПЗ. И именно, при пересечении станцией Бразильской аномалии были обнаружены стационарные потоки высокоэнергичных ...

Скачать
44832
0
0

... , которые высыпаются на средних широтах. (В данной главе рассмотрены различные случаи высыпаний высокоэнергичных частиц под воздействием различных типов волн: свистов и ионно-циклотронных)  Во время геомагнитных возмущений высыпание энергичных электронов из радиационных поясов Земли может быть основным источником притока энергии для ионизации среднеширотной мезосферы. Один особенно интенсивный ...

Скачать
283636
0
0

... в последовательности спектра (красная, оранжевая, желтая, зеленая, голубая, синяя, фиолетовая), однако цвета почти никогда не бывают чистыми, поскольку полосы взаимно перекрываются. Как правило, физические характеристики радуг существенно различаются, поэтому и по внешнему виду они весьма разнообразны. Их общей чертой является то, что центр дуги всегда располагается на прямой, проведенной от ...

Скачать
23005
4
5

уровней играет дискретный набор их разрешенных энергетических состояний. В классических мазерных системах, например в космических циклотронных мазерах, осцилляторами являются заряженные частицы в магнитном поле; спектр их энергий непрерывен. Как известно, заряженная частица в плоскости, перпендикулярной направлению магнитного поля, движется по окружности с частотой вращения (циклотронной частотой ...

0 комментариев


Наверх