Типовой расчет графов45 å =14+1=15
 

x1

x2

x4

x5

 

x1

¥

1

01

¥

 

x4

00

¥

¥

¥

1

x5

01

01

1

¥

 

x6

6

¥

00

00

 
           

Продолжаем по Типовой расчет графов23Типовой расчет графов36Типовой расчет графов45. Дробим по переходу x5-x1:

Таблица Типовой расчет графов23Типовой расчет графов36Типовой расчет графов45Типовой расчет графов51 å =14+1=15

 

x2

x4

 

x1

1

¥

1

x6

¥

00

 
       

Таблица Типовой расчет графов23Типовой расчет графов36Типовой расчет графов45Типовой расчет графов51 å =14+6=20

 

x1

x2

x4

 

x1

¥

1

01

 

x5

¥

01

¥

 

x6

0

¥

00

 
 

6

     

Окончательно имеем Гамильтонов контур: 2,3,6,4,5,1,2.

Типовой расчет графов

Прадерево разбиений:

Типовой расчет графов

Задача 10 (Задача о назначениях) Дан полный двудольный граф Knn с вершинами первой доли x1, x2,...xn.и вершинами другой доли y1, y2,...yn..Вес ребра {xi,yj} задается элементами vij матрицы весов. Используя венгерский алгоритм, найти совершенное паросочетание минимального (максимального веса). Выполнить рисунок.

Матрица весов двудольного графа K55 :

 

y1

y2

y3

y4

y5

x1

2

0

0

0

0

x2

0

7

9

8

6

x3

0

1

3

2

2

x4

0

8

7

6

4

x5

0

7

6

8

3

Первый этап - получение нулей не нужен, т. к. нули уже есть во всех строк и столбцах.

Второй этап - нахождение полного паросочетания.

 

y1

y2

y3

y4

y5

x1

2

0

0

0

0

x2

0

7

9

8

6

x3

0

1

3

2

2

x4

0

8

7

6

4

x5

0

7

6

8

3

Третий этап - нахождение максимального паросочетания.

 

y1

y2

y3

y4

y5

 

x1

2

0

0

0

0

X

x2

0

7

9

8

6

X

x3

0

1

3

2

2

 

x4

0

8

7

6

4

 

x5

0

7

6

8

3

 
 

X

X

       

Четвертый этап - нахождение минимальной опоры.

Типовой расчет графов
 

y1

y2

y3

y4

y5

 

x1

2

0

0

0

0

 

x2

0

7

9

8

6

5

x3

0

1

3

2

2

1

x4

0

8

7

6

4

2

x5

0

7

6

8

3

3

 

4

         

Пятый этап - возможная перестановка некоторых нулей.

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

 

x2

0

6

8

7

5

5

x3

0

0

2

1

1

1

x4

0

7

6

5

3

2

x5

0

6

5

7

2

3

 

4

         

Решение с ненулевым значением. Переход ко второму этапу.

Полное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

 

x2

0

6

8

7

5

 

x3

0

0

2

1

1

 

x4

0

7

6

5

3

 

x5

0

6

5

7

2

 
             

Максимальное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

X

x2

0

6

8

7

5

X

x3

0

0

2

1

1

 

x4

0

7

6

5

3

 

x5

0

6

5

7

2

 
 

X

X

       

Минимальная опора:

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

6

x2

0

6

8

7

5

7

x3

0

0

2

1

1

1

x4

0

7

6

5

3

2

x5

0

6

5

7

2

3

 

4

5

       

Перестановка нулей:

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

6

x2

0

6

8

7

5

7

x3

0

0

2

1

1

1

x4

0

7

6

5

3

2

x5

0

6

5

7

2

3

 

4

5

       

Полное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

6

x2

0

6

8

7

5

7

x3

0

0

2

1

1

1

x4

0

7

6

5

3

2

x5

0

6

5

7

2

3

 

4

5

       

Максимальное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

X

x2

0

6

8

7

5

 

x3

0

0

2

1

1

X

x4

0

7

6

5

3

X

x5

0

6

5

7

2

 
 

X

X

X

     

Минимальная опора:

 

y1

y2

y3

y4

y5

 

x1

3

0

0

0

0

 

x2

0

6

8

7

5

1

x3

0

0

2

1

1

 

x4

0

7

6

5

3

 

x5

0

6

5

7

2

2

 

3

         

Перестановка нулей:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

 

x2

0

4

6

5

3

1

x3

2

0

2

1

1

 

x4

2

7

6

5

3

 

x5

0

4

3

5

0

2

 

3

         

Полное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

 

x2

0

4

6

5

3

 

x3

2

0

2

1

1

 

x4

2

7

6

5

3

 

x5

0

4

3

5

0

 
             

Максимальное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

X

x2

0

4

6

5

3

X

x3

2

0

2

1

1

X

x4

2

7

6

5

3

 

x5

0

4

3

5

0

X

 

X

X

X

 

X

 

Минимальная опора:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

 

x2

0

4

6

5

3

 

x3

2

0

2

1

1

 

x4

2

7

6

5

3

1

x5

0

4

3

5

0

 
             

Перестановка нулей:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

 

x2

0

4

6

5

3

 

x3

2

0

2

1

1

 

x4

0

5

4

3

1

1

x5

0

4

3

5

0

 
             

Полное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

 

x2

0

4

6

5

3

 

x3

2

0

2

1

1

 

x4

0

5

4

3

1

1

x5

0

4

3

5

0

 
             

Максимальное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

X

x2

0

4

6

5

3

X

x3

2

0

2

1

1

X

x4

0

5

4

3

1

 

x5

0

4

3

5

0

X

 

X

X

X

 

X

 

Минимальная опора:

 

y1

y2

y3

y4

y5

 

x1

5

0

0

0

0

 

x2

0

4

6

5

3

3

x3

2

0

2

1

1

 

x4

0

5

4

3

1

1

x5

0

4

3

5

0

 
 

2

         

Перестановка нулей:

 

y1

y2

y3

y4

y5

 

x1

6

0

0

0

0

 

x2

0

3

5

4

2

3

x3

3

0

2

1

1

 

x4

0

4

3

2

0

1

x5

1

4

3

5

0

 
 

2

         

Полное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

6

0

0

0

0

 

x2

0

3

5

4

2

3

x3

3

0

2

1

1

 

x4

0

4

3

2

0

1

x5

1

4

3

5

0

 
 

2

         

Максимальное паросочетание:

 

y1

y2

y3

y4

y5

 

x1

6

0

0

0

0

X

x2

0

3

5

4

2

X

x3

3

0

2

1

1

X

x4

0

4

3

2

0

 

x5

1

4

3

5

0

X

 

X

X

X

 

X

 

Минимальная опора:

 

y1

y2

y3

y4

y5

 

x1

6

0

0

0

0

 

x2

0

3

5

4

2

4

x3

3

0

2

1

1

 

x4

0

4

3

2

0

1

x5

1

4

3

5

0

5

 

2

     

3

 

В результате имеем:

 

y1

y2

y3

y4

y5

 

x1

6

0

0

0

0

 

x2

0

1

3

2

2

4

x3

3

0

2

1

1

 

x4

0

2

1

0

0

1

x5

1

4

3

5

0

5

 

2

     

3

 

Исходный граф

Типовой расчет графов

Полученный граф:

Типовой расчет графов

Вес найденного совершенного паросочетания = 12.

Задача 11 Решить задачу 10, используя алгоритм ветвей и границ (отождествив вершины xi и yj).

Таблица Е (исходная). Строки - xi , столбцы - yj. å =0

 

1

2

3

4

5

 

1

2

01

03

02

02

 

2

06

7

9

8

6

 

3

01

1

3

2

2

 

4

04

8

7

6

4

 

5

03

7

6

8

3

 
             

Дробим по переходу x2 - y1:

Таблица Е21 å =0+8=8

 

2

3

4

5

 

1

00

02

01

00

 

3

01

2

1

1

1

4

4

3

2

02

4

5

4

3

5

03

3

           

Таблица


Информация о работе «Типовой расчет графов»
Раздел: Математика
Количество знаков с пробелами: 17034
Количество таблиц: 46
Количество изображений: 23

Похожие работы

Скачать
68359
14
22

... цепи   W1(s) = Wp(s) представлено как параллельное соединение простейших звеньев. 2.9 Неопределенность моделей систем управления Математические модели не отражают исчерпывающим образом динамические свойства систем управления в силу идеализации и упрощений, неизбежных при моделировании, неточной реализации алгоритмов управления и изменений характеристик объектов и других элементов в ...

Скачать
49693
0
0

... статистической информации на ЭВМ. 3. Организация решения статистических задач с помощью комплекса средств новой технологии для обработки статистической информации. Одной из главных особенностей автоматизированной обработки статистической информации является новая технология, обеспечиваю- щая более эффективную обработку на основе достижения технической, программной, ...

Скачать
55633
2
29

... чертеж – документ, содержащий изображение сборочной единицы и другие данные, необходимые для ее сборки, изготовления и контроля. К сборочным чертежам также относят гидромонтажные, пневмомонтажные и электромонтажные чертежи;      чертеж общего вида – документ, определяющий конструкцию изделия, взаимодействие его составных частей и поясняющий принцип работы изделия;      ...

Скачать
90545
16
0

... документооборота сдают производственные отчеты до 25 числа каждого месяца в вышестоящую организацию. Как и многие хозяйства ЗАО «Нива» утвердило основной формой бухгалтерского учета – журнально-ордерную. 3. Учет расчетов по оплате труда работников растениеводства в Закрытом Акционерном Обществе «Нива» Песчанокопского района. 3.1 Первичный учет. Процесс производства связан с затратами не ...

0 комментариев


Наверх