Алгебра матриц. Системы линейных уравнений

2141
знак
0
таблиц
16
изображений

Вариант 6

Тема: Алгебра матриц

 

Задание: Выполнить действия над матрицами.

 

1) С=3A-(A+2B)B

2) D=A2+B2+4E2

 


Тема: Обращение матриц

Обратить матрицу по определению:

Определитель матрицы:

Далее находим матрицу алгебраических дополнений (союзную матрицу):

Обратную матрицу находим:

По определению обратной матрицы:

Действительно:

Тема: решение матричных уравнений

 

Задание 1: Решить матричное уравнение:

 

Решение.

 

Нахождение столбца Х сводится к умножению матрицы на обратную:

 

Матрица коэффициентов А:


Найдем обратную матрицу A-1:

Определитель матрицы A:

Алгебраические дополнения:

   

  

  

Транспонированная матрица алгебраических дополнений:

Запишем выражение для обратной матрицы:

Итак, выполняем умножение матриц и находим матрицу X:


Ответ:

Задание 2: Решить систему уравнений матричным способом

Решение

 

Матричная запись уравнения:

Матрица коэффициентов А:


Найдем обратную матрицу A-1:

Определитель матрицы A:

Алгебраические дополнения:

  

  

  

Транспонированная матрица алгебраических дополнений (союзная матрица):

Запишем выражение для обратной матрицы:

Вычислим столбец неизвестных:


Тема: Решение систем линейных уравнений методом Крамера и Гаусса

 

Задание 1: Исследовать и решить систему по формулам Крамера:

Найти решение системы уравнений по методу Крамера.

Согласно методу Крамера, если определитель матрицы системы ненулевой, то система из 4-х уравнении имеет одно решение, при этом значение корней:

,,,,

Где:

 - определитель матрицы коэффициентов – ненулевой.


 - определитель матрицы полученной путем замены первого столбца матрицы коэффициентов на столбец свободных членов.

 - определитель матрицы полученной заменой второго столбца матрицы коэффициентов на столбец свободных членов.

 - определитель матрицы полученной заменой третьего столбца матрицы коэффициентов на столбец свободных членов.

 - определитель матрицы полученной заменой четвертого столбца матрицы коэффициентов на столбец свободных членов.

Итак:


,

,

.

Задание 2: Решить эту систему по методу Гаусса.

Метод Гаусса заключается в сведении системы к треугольному виду.

Видим, что решение системы по методу Гаусса совпадает с решением по методу Крамера.


Информация о работе «Алгебра матриц. Системы линейных уравнений»
Раздел: Математика
Количество знаков с пробелами: 2141
Количество таблиц: 0
Количество изображений: 16

Похожие работы

Скачать
43269
5
8

... . При этом собственно нахождение обратной матрицы – процесс достаточно трудоемкий и его программирование вряд ли можно назвать элементарной задачей. Поэтому на практике чаще применяют численные методы решения систем линейных уравнений. К численным методам решения систем линейных уравнений относят такие как: метод Гаусса, метод Крамера, итеративные методы. В методе Гаусса, например, работают над ...

Скачать
26455
2
2

... 4.Исходный текст программы Составить программу решения систем линейных алгебраических уравнений с квадратной невырожденной матрицей порядка n методом Гаусса с использованием языка С++ . // Решение системы линейных уравнений методом Гаусса. #include<io.h> #include "stdio.h" #include "conio.h" #include <windows.h> #include <iostream> #include <time.h> #include ...

Скачать
21598
0
0

... + аm2с2 + …+ аmnсn где c1, c2,..., сп — коэффициенты линейных комбинаций. Таким образом, системе (14) удовлетворяют значения x1 = c1,..., хп = сп, следовательно, она совместна. Теорема доказана. Доказанная теорема совместности системы линейных уравнений называется теоремой Кронекера – Капелли. Пример 1. Рассмотрим систему 5x1 – x2 + 2x3 + x4 = 7; 2x1 + x2 – 4x3 – 2x4 = 1; x1 – 3x2 + ...

Скачать
14346
0
5

... треугольной матрицей. Вычисления значений неизвестных производят на этапе обратного хода. Целью данной курсовой работы является численное решение системы линейных уравнений с помощью метода исключения Гаусса с выбором главного элемента по столбцу. 1 Постановка задачи Задача ставится следующим образом. Пусть требуется найти решение системы линейных алгебраических уравнений a1,1x1 + a1, ...

0 комментариев


Наверх