2.4 Средства контроля многослойных конструкций.
Реверберационный, импедансный, велосиметрический, акустико-топографический методы и локальный метод свободных колебаний используют в основном для контроля многослойных конструкций. Реверберационным методом обнаруживают в основном нарушения соединений металлических слоев (обшивок) с металлическими или неметаллическими силовыми элементами или наполнителями.
Импедансным методом выявляют дефекты соединений в многослойных конструкциях из композиционных полимерных материалов и металлов, применяемых в различных сочетаниях. Велосиметрическим методом и локальным методом свободных колебаний контролируют в основном изделия из полимерных композиционных материалов. Акустико-топографический метод применяют для обнаружения дефектов преимущественно в металлических многослойных конструкциях (сотовые панели, биметаллы и т.п.).
Реверберационный метод (рис. 9) использует влияние дефекта на время затухания многократно отраженных ультразвуковых импульсов в контролируемом объекте. Например, при контроле клееной конструкции с наружным металлическим слоем и внутренним полимерным слоем дефект соединения препятствует передаче энергии во внутренний слой, что увеличивает время затухания многократных эхо-сигналов во внешнем слое. Отражения импульсов в полимерном слое обычно отсутствуют вследствие большого затухания ультразвука в полимере.
Импедансный метод используют зависимость импедансов изделий при их упругих колебаниях от параметров этих изделий и наличия в них дефектов. В импедансных методах используют изгибные и продольные волны.
При использовании изгибных волн преобразователь стержневого типа (рис. 10) содержит соединенный с генератором 1 излучающий 2 и приемный 4 пьезоэлементы. Через сухой точечный контакт преобразователь возбуждает в изделии 3 гармонические изгибные колебания. В зоне дефекта соединения модуль механического импеданса уменьшается и меняется его аргумент φ. Эти изменения регистрируются электронной аппаратурой. В импульсном варианте этого метода в системе преобразователь - изделие возбуждают импульсы свободно-затухающих колебаний. Признаком дефекта служит уменьшение амплитуды и несущей частоты этих колебаний.
Кроме совмещенного преобразователя применяют раздельно-совмещенные преобразователи, имеющие в общем корпусе раздельные излучающий и приемный вибраторы. Эти преобразователи работают в импульсном режиме. При работе совмещенными преобразователями используют частоты до 8 кГц, раздельно-совмещенными - импульсы с несущими частотами 15 ... 35 кГц.
Рисунок 10. 1 - генератор; 2 - излучатель; 3 - объект контроля; 4 - приемник; 5 -усилитель; 6 - блок обработки информации с индикатором
В другом варианте в контролируемой многослойной конструкции с помощью плоского пьезопреобразователя возбуждают продольные упругие волны фиксированной частоты. Дефекты регистрируют по изменению входного электрического импеданса Z пьезопреобразователя. Импеданс Z3 определяется входным акустическим импедансом контролируемой конструкции, зависящим от наличия и глубины залегания дефектов соединения между ее элементами. Изменения импеданса представляют в виде точки на комплексной плоскости, положение которой зависит от характера дефекта. В отличие от методов, использующих изгибные волны, преобразователь контактирует с изделием через слой контактной смазки.
Велосиметрический метод, основанный на регистрации изменения скорости распространения дисперсионных мод упругих волн в зоне дефекта и применяемый при одностороннем и двустороннем доступе к контролируемому объекту (рис. 11). В этом методе обычно используют преобразователи с сухим точечным контактом. В варианте с односторонним доступом (рис. 11, верх) скорость возбуждаемой излучателем антисимметричной волны нулевого порядка (а0) в отделенном дефектом слое меньше, чем в бездефектной зоне. При двустороннем доступе (рис. 11, внизу) в бездефектной зоне энергия передается продольной волной L, в зоне дефекта - волнами а0, которые проходят больший путь и распространяются с меньшими скоростями, чем продольная волна. Дефекты отмечаются по изменению фазы или увеличению времени прохождения (только в импульсном варианте) по контролируемому изделию.
Рисунок 11. Велосиметрический метод контроля; 1 - генератор; 2 - излучатель; 3 - объект контроля; 4 - приемник; 5 - усилитель; 6 - измеритель амплитуды; 7 - измеритель времени пробега; 8 - измеритель фазы
В локальном методе (рис. 12) возбуждаемый генератором 1 вибратор 10 создает периодические удары по контролируемому изделию. Электрические сигналы с приемного микрофона 4 через усилитель 5 поступают на спектроанализатор Р. Выделенный последним спектр принятого сигнала обрабатывается решающим устройством 11, результат обработки появляется на индикаторе. Кроме микрофонов применяют пьезоприемники.
Рисунок 12. Локальный метод свободных частот; 1 - генератор непрерывных колебаний меняющейся частоты; 2 - излучатель; 3 - объект контроля; 4 - приемник; 5 - усилитель; 6 - индикатор резонанса; 7 - модулятор частоты; 8 - индикатор; 9- спектроанализатор; 10-ударный вибратор; 11-блок обработки информации
Дефекты регистрируют по изменению спектра принятого импульсного сигнала. В отличие от интегрального метода контроль выполняется путем сканирования изделий. Обычный диапазон рабочих частот от 0,3 до 20 кГц.
Акустико-топографический метод имеет признаки интегрального и локального методов. Он основан на возбуждении в изделии интенсивных изгибных колебаний непрерывно меняющейся частоты и регистрации распределения амплитуд колебаний с помощью наносимого на поверхность порошка. Упругие колебания возбуждают преобразователем, прижимаемым к сухому изделию. Преобразователь питают от мощного (порядка 0,4 кВт) генератора непрерывно меняющейся частоты.
Если собственная частота отделенной дефектом (расслоением, нарушением соединения) зоны попадает в диапазон возбуждаемых частот, колебания этой зоны усиливаются, покрывающий ее порошок смещается и концентрируется по границам дефектов, делая их видимыми. Диапазон используемых частот от 40 до 150 кГц.
БИБЛИОГРАФИЯ
1. Алешин Н. П., Лупачев В. Г. Ультразвуковая дефектоскопия: Справ, пособие.— Мн.: Выш. шк., 1987.— 271 с: ил.
2. Каневский И.Н., Сальникова Е.Н. Неразрушающие методы контроля: Учебное пособие. - Владивосток: Изд-во ДВГТУ, 2007. - 243 с.
3. Справочник "Неразрушающий контроль и диагностика" В.В. Клюев, Ф.Р. Соснин, А.В. Ковалев и др. Москва, издательство "Машиностроение", 2003 г.... частности, об отсутствии необходимой заинтересованности и ответственности персонала контролирующих подразделений в полном выявлении брака на обслуживаемых участках производства. В структуре служб контроля качества продукции многих предприятий в основном присутствуют подразделения, обеспечивающие технические и технологические аспекты контроля качества. При этом недостаточно развиты организационно- ...
... в процесс, были одобрены, спланированы, получили материально-техническую поддержку и управлять в целях заинтересованных сторон. Глава 3. Перспектива автоматизации системы неразрушающего контроля изделий на предприятиях машиностроительного профиля 3.1 Комплексная технология АУЗК В связи с высоким техническим уровнем современного производства методом и средством НК предъявляют высокие ...
... , внедрение прогрессивного оборудования, повышение эффективности методов контроля качества металла, активное внедрение комплексной системы управления качеством продукции, постоянное повышение трудовой, производственной и исполнительской дисциплины. Неразрушающий контроль качества методами дефектоскопии Дефектоскопия–комплекс методов и средств неразрушающего контроля материалов и изделий с ...
... проверку соблюдения организационных и технологических требований, эксплуатационной и ремонтной документации. Объектами эксплуатационного контроля являются эксплуатируемые изделия РЭСИ и технологические процессы их эксплуатации. Методы неразрушающего контроля РЭСИ Методы неразрушающего контроля нашли наиболее широкое применение в технологии контроля РЭСИ благодаря своей высокой ...
0 комментариев