5. Анализ устойчивости системы. Определение запасов устойчивости
5.1 Анализ устойчивости по критерию Гурвица
Для анализа устойчивости САР частоты вращения приводного электродвигателя стенда для обкатки ДВС воспользуемся любой из полученных в пункте 4 передаточных функций, из которых следует что характеристическое уравнение системы:
Для анализа устойчивости воспользуемся непосредственно условиями устойчивости для уравнения четвертой степени: >0, >0, >0, >0, >0;
Все коэффициенты характеристического уравнения положительны.
Проверим второе условие:
>0
Полученный результат показывает, что система устойчива.
5.2. Анализ устойчивости по критерию Найквиста
Для определения устойчивости САР условно разомкнем систему (место размыкания показано на Рис. 3 волнистой линией):
Все звенья разомкнутой системы устойчивы, поскольку одно звено имеет 2-й порядок, два звена – 1-й порядок и коэффициенты их характеристических уравнений положительны.
Частотная передаточная функция разомкнутой системы.
Подставим в частотную передаточную функцию численные значения параметров.
Для построения АФХЧ разомкнутой системы представим частотную передаточную функцию в виде:
,
тогда
Получаем
Результаты расчета сводим в табл. 2.
Таблица 2. Результаты расчета для построения АФЧХ.
0 | 0,005 | 0,01 | 0,05 | 0,08 | 0,1 | 0,15 | 0,2 | 0,6 | 0,8 | |
5 | 4,93 | 4,764 | 1,895 | 0,539 | 0,0684 | -0,41 | -0,5 | -0,15 | -0,087 | |
0 | -0,596 | -1,158 | -2,954 | -2,511 | -2,115 | -1,32 | -0,82 | -0,02 | 0,009 |
5.3 Определяем запас устойчивости САР:
Запас устойчивости по амплитуде для данной САР =0,82 , по фазе - , что удовлетворяют рекомендованным величинам запасов устойчивости по амплитуде и по фазе.
Рис. 4 АФЧХ разомкнутой системы
6. Анализ зависимости статической ошибки системы от изменения управляющего воздействия на систему
При выполнении такого анализа используют передаточную функцию системы для ошибки по управляющему воздействию.
Воспользуемся передаточной функцией для ошибки по управляющему воздействию, полученной в разделе 4 для нашей системы:
В статистике р обращается в ноль, поэтому:
Таким образом:
где К - коэффициент передачи разомкнутой системы.
После подстановки численного значения K получим .
Рассматриваемая система имеет статическую ошибку, пропорциональную изменению управляющего воздействия на систему.
7. Совместный анализ изменения управляемой величины объекта управления и системы от возмущающего воздействия в статике. Определение статической ошибки системы по возмущающему воздействию
Воспользуемся передаточными функциями объекта управления и системы по возмущающему воздействию.
В статике р обращается в ноль, поэтому для объекта:
Для системы:
После подстановки численных значений параметров получаем зависимость изменения температуры на ОУ от изменения наружной температуры.
- для ОУ без регулятора;
- для ОУ, снабженного регулятором.
Передаточная функция системы для ошибки по возмущающему воздействию:
Поэтому для нашей системы:
Таким образом, температура внутри животноводческого помещения без применения САР изменяется также, как и температура наружного воздуха.
При применении САР частота вращения изменяется примерно на 17% при изменении момента на валу. Это свидетельствует о том, что эксплутационные качества обкатки ДВС существенно улучшились.
8. Оценка качества управления по переходным функциям
8.1 Определение перерегулирования
Для переходной функции по управляющему воздействию (Рис. 5):
==19,2%
Для переходных процессов по возмущающему воздействию (Рис. 6)
8.2 Быстродействие системы.
Определим интервал времени от начала переходного процесса до момента, когда отклонение выходной величины от ее нового значения становится меньше определенной величины
Для переходной функции по управляющему воздействию:
c.
Для переходной функции по возмущающему воздействию:
c.
8.3 Колебательность переходного процесса
Определяется числом перерегулирования N для переходной функции по управляющему воздействию или числом колебаний N для переходной функции по возмущающему воздействию за время переходного процесса. Для рассматриваемого процесса N=1.
Для переходных процессов, как по управляющему воздействию, так и по возмущающему воздействию
Но при N=1 , поэтому для переходных функций и
8.4 Определение статической ошибки системы по переходной функции
Статическая ошибка по управляющему воздействию:
Что совпадает с результатом, полученным при
Статическая ошибка по возмущающему воздействию:
Поскольку переходная функция получена при этот результат совпадает с полученным в пункте 7.
Рис. 5 Переходная функция по управляющему воздействию САР частоты вращения приводного электродвигателя стенда для обкатки ДВС.
Рис. 6 Переходная функция по возмущающему САР частоты вращения приводного электродвигателя стенда для обкатки ДВС.
9. Общие выводы по работе
Объектом управления САР частоты вращения приводного электродвигателя стенда для обкатки ДВС является асинхронный двигатель с фазным ротором. Управляющим воздействием на ОУ является угол поворота вала, присоединенного к реостату, φр. Основным возмущающим воздействием является изменение момента на валу ротора.
Закон регулирования - пропорциональный.
Система устойчива. Запас устойчивости по амплитуде 0,82, по фазе 61о, что удовлетворяет рекомендованным запасам устойчивости. Система является статической. Статическая ошибка, как по управляющему воздействию, так и по возмущающему воздействию составляет: и .
Прямые оценки качества управления следующие: перерегулирование =19,2%; число перерегулирований и колебаний N=1, что удовлетворяет предъявляемым требованиям; время регулирования составляет около 28,80 с, максимальное отклонение регулируемой величины от ее установившегося значения, приходящееся на единицу ступенчатого возмущающего воздействия, составляет 0,086.
Колебательность системы равна 0.
Качество системы следует считать удовлетворительным.
Список литературы
1. Юревич Е. Н. Теория автоматического регулирования – Л. Энергия, 1975 – 416 с.м.
2. Бородин Н. Ф. Кирилин Н.Н. Основы автоматики и автоматизации производственных процессов.
3. Бабанов Н.А., Воронов А.А. Теория автоматического управления – М. Высшая школа 1986 – 367с.
4. Солодовников В. В., Плотников В. Н., Яковлев А. В. Основы теории и элементы систем автоматического регулирования – М. Машиностроение, 1985 – 536с.
5. Бохан И.И., Бородин Н.Ф., Дробышев Ю.В., Фурсенко С.Н., Герасенков А.А. Средства автоматики и телемеханики – М. Агропромиздат, 1992 – 351с.
6. Бородин Н.Ф. Технические средства автоматики – М. Колос, 1982 – 303с.
7. Бохан Н.Н., Фурунжиев Д.А. Основы автоматики и микропроцессорной техники – Мн., Уроджай, 1987 – 376с.
0 комментариев