2.1.3 Мостовые преобразователи «напряжение-ток»
Как уже отмечалось, основная погрешность линейности преобразования рассматриваемых ПНТ обусловлена существенной режимной зависимостью rЭ от тока эмиттера.
На рисунке 2.21 приведена схема мостового преобразователя «напряжение-ток», в котором влияние выходного сопротивления преобразователя на точность преобразования существенно снижено. В основе такой мостовой схемы лежит «бриллиантовый транзистор» [11]. Действительно, для тока, протекающего через резистор R1, можно записать:
, (2.22)
где RВЫХ.1,2– выходное сопротивление соответствующего «бриллиантового транзистора».
Рис. 2.21. Схема мостового преобразователя «напряжение-ток»
Выходное сопротивление «бриллиантового транзистора» можно представить следующим образом:
, (2.23)
где rЭ.N, rЭ.Р – дифференциальные сопротивления эмиттеров выходных транзисторов (VT4, VT6) типа n-p-n и p-n-p соответственно; rБ.N, rБ.P– приведенные к выходу объемные сопротивления базы соответствующих транзисторов.
Если пренебречь объемными сопротивлениями базы, выражение (2.23) преобразуется к виду:
.
Это значит, что выходное сопротивление бриллиантового транзистора не зависит от тока, протекающего через резистор R1 или, что то же самое, крутизна преобразования напряжения в ток не зависит от уровня входного сигнала.
Реально объемные сопротивления базы транзисторов не равны нулю, более того – они режимно зависимы, так как в объемном сопротивлении базы присутствуют две составляющие. Первая составляющая определяет сопротивление вывода базы и сопротивление внешней области базы, которое не зависит от тока базы. Вторая составляющая характеризует сопротивление активной области базы, находящейся непосредственно под эмиттером – это сопротивление зависит от тока базы [12]. Вид этой зависимости достаточно сложен и носит полуэмпирический характер для различных транзисторов. Однако для многих случаев характер этой зависимости таков, что максимум крутизны преобразования лежит не в окрестности UX = 0, а на краях динамического диапазона и отклонение крутизны от линейности существенно меньше, чем в схеме классического преобразования тока в напряжение на основе дифференциального каскада (рис. 2.3а).
Зависимость тока через резистор R1 в этом случае можно представить как
. (2.24)
К достоинствам такого способа построения мостового преобразователя можно также отнести гораздо более широкий динамический диапазон по входному напряжению при заданной погрешности преобразования или возможность уменьшения сопротивления R1 для увеличения крутизны.
С другой стороны, мостовая схема преобразователя имеет в два раза меньшую крутизну по сравнению с базовой схемой (рис. 2.3а), так как результирующее приращение тока через резистор R1 возникает как за счет верхнего, так и за счет нижнего плеча моста, которые имеют противоположные знаки. Поэтому токи коллекторов транзисторов VT4 и VT3 имеют в два раза меньшие приращения, чем ток в резисторе R1.
Повысить крутизну преобразования можно, вводя повторители тока (F1 и F2 на рис. 2.22). Действительно, приращение тока коллектора транзистора VT6 суммируется практически с таким же приращением тока коллектора транзистора VT9, приведенного к резистору R2 через повторитель тока F2.
Результирующее значение тока, определяющее крутизну преобразования для схемы ПНТ (рис. 2.22) можно определить как разность токов, протекающую через резисторы R1 и R2:
, (2.25)
где ai – коэффициент передачи тока эмиттера соответствующего транзистора; КI – коэффициент передачи повторителя тока F1 (F2). (Выражение (2.24) получено в предположении, что a6 =a10 » 1, a5 =a9 и коэффициенты передачи повторителей тока F1 и F2 равны.)
Очевидно, что при выборе КI > 1 результирующая крутизна преобразования может быть сделана больше, чем в базовой схеме при одинаковых сопротивлениях резисторов R1 и R11 (рис. 2.22).
Коэффициент передачи тока эмиттера для большинства интегральных боковых p-n-p транзисторов может быть существенно меньше единицы и, как правило, при некоторых значениях тока с его ростом начинает снижаться. Это справедливо, например, для транзисторов, входящих в АБМК НПО «Интеграл» (г. Минск) и БМК НПО «Пульсар» (г. Москва). В первом приближении в диапазоне токов 0,1-3 мА зависимость a от тока эмиттера можно аппроксимировать линейной функцией:
, (2.26)
где a0 – коэффициент передачи тока эмиттера при IX = 0; А – некоторый коэффициент, имеющий размерность [1/А].
Подстановка (2.26) в (2.25) дает:
. (2.27)
Дробная часть выражения (2.27) содержит квадратичную составляющую тока IX, которая компенсирует увеличение тока через резистор R1 при уменьшении выходного сопротивления мостовой схемы преобразователя. В этом случае определенному значению КI должно соответствовать определенное значение сопротивлений базы, приведенных к выходу. Для этого в цепь базы одного из транзисторов мостовой схемы преобразователя может быть введен дополнительный резистор (R12, R13, рис. 2.22).
Рис. 2.22. Упрощенная схема мостового ПНТ с повышенной крутизной
и компенсацией нелинейности (а) и базовая схема ПНТ (б)
на основе дифкаскада
Результаты моделирования схемы ПНТ (рис. 2.22) приведены на рисунке 2.23. Моделирование проведено в сравнении с базовой схемой на основе дифференциального каскада при одинаковой крутизне преобразования и близких статических токах выходных транзисторов той и другой схемы. Погрешность крутизны преобразования для базовой схемы достигает 20 %, а для схемы мостового преобразователя – менее 0,012 % (нижний график на рисунке 2.20), поскольку диапазон изменения входного сигнала составляет ±3 В.
Другой вариант построения мостового ПНТ на основе двухтактного эмиттерного повторителя приведен на рисунке 2.24.
Идея его построения подобна ПНТ на основе «бриллиантового транзистора», и ток через резистор, определяющий начальную крутизну преобразования, описывается выражением, аналогичным (2.24). Цепь, компенсирующая снижение крутизны преобразования, также выполнена на основе повторителей тока (VT11-VT14, рис. 2.24). Отличие заключается в том, что компенсация нелинейности осуществляется включением резистора R16 между входами повторителей тока.
Суть компенсации нелинейности в этом случае заключается в следующем. С ростом тока в одном из плеч дифференциального повторителя тока растет напряжение база-эмиттер входного транзистора, например VT13. В то же время напряжение база-эмиттер транзистора VT11 уменьшается, так как входной ток повторителя тока также убывает. Возникает разность напряжений база-эмиттер, создающая приращение тока в резисторе R16. В результате ток коллектора транзистора VT12 убывает, а ток коллектора VT14 возрастает на величину тока, протекающего через резистор R16. Это, в конечном счете, приводит к тому, что результирующий коэффициент передачи повторителей тока становится режимно зависимой функцией: он убывает с ростом входного тока, за счет чего достигается компенсация нелинейности ПНТ.
Рис. 2.23. Отклонение крутизны преобразования схемы мостового
ПНТ на основе «бриллиантовых транзисторов» (нижний график)
и абсолютное значение крутизны (верхний график)
Действительно, для коэффициента передачи повторителей тока на транзисторах VT12-VT13 и VT11-VT14 можно записать:
где I12, I14 – соответственно токи коллектора транзисторов VT12 и VT14; КI =s13/s12=s11/s14 – коэффициент передачи соответствующего повторителя тока, обусловленный отношением площадей si эмиттеров транзисторов; IK – компенсирующий ток, причем
Рис. 2.24. Упрощенная принципиальная схема мостового преобразователя на двухтактных повторителях напряжения с цепью компенсации на основе нелинейного повторителя тока
Результирующая разность токов на выходе ПНТ может быть представлена как
. (2.28)
При определении крутизны преобразования второе слагаемое в выражении (2.27) дает квадратичную составляющую (производная dIK/dUX имеет противоположный знак по отношению к производной dIХ/dUX ), которая при соответствующем выборе сопротивления резистора R16 почти полностью компенсирует нелинейность преобразования напряжения в ток.
График зависимости крутизны преобразования напряжения в ток для схемы ПНТ (рис. 2.24) в сравнении с базовой схемой, приведен на рисунке 2.25, причем для сравнения с базовой выбрано примерно одинаковое абсолютное значение крутизны и одинаковое токопотребление схем. Отклонение от линейности в схеме мостового преобразователя не превышает 0,003 %.
Рис. 2.25 Отклонение крутизны преобразования схемы мостового
преобразователя напряжение-ток на основе двухтактного повторителя
напряжения (верхний график) и базовой схемы (нижний график)
На основании проведенного анализа и результатов моделирования можно сделать следующие выводы:
- схема мостового преобразователя напряжение-ток изначально имеет меньшую погрешность преобразования в сравнении с базовой схемой на основе дифференциального каскада, так как в мостовой схеме осуществляется взаимная компенсация выходного сопротивления, являющегося основным источником погрешности;
- мостовой преобразователь имеет крутизну преобразования в два раза ниже в сравнении с базовой схемой. Повысить крутизну преобразования можно использованием повторителей тока, выходы которых включены перекрестно;
- подбором приведенного к выходу мостового преобразователя на основе «бриллиантового транзистора» объемного сопротивления базы транзистора можно существенно скомпенсировать нелинейность преобразователя, обусловленную выходным сопротивлением. Выбором соответствующего коэффициента передачи повторителя тока удается скомпенсировать погрешность преобразования, обусловленную режимной зависимостью коэффициента передачи тока эмиттера;
- применение нелинейного повторителя тока позволяет компенсировать нелинейность преобразователя при одновременном повышении крутизны преобразования в заданное число раз;
- динамический диапазон мостовых преобразователей «напряжение-ток» по входному сигналу может достигать диапазона ±ЕП, что принципиально недостижимо в преобразователях «напряжение-ток» на основе дифференциального каскада. Это особенно важно при проектировании низковольтных прецизионных аналоговых перемножителей напряжения.
Наиболее существенный недостаток мостовой схемы – ее относительная сложность и наличие транзисторов p-n-p типа, однако возможность изготовления двухтактного повторителя по технологии «бриллиантового транзистора» оставляет надежду, что подобные схемы могут получить распространение [19].
Все вышеизложенное позволяет сделать вывод о перспективности использования мостовых преобразователей «напряжение-ток» в схемах аналоговых перемножителей напряжения.
... ПЧФ, равным , то есть Сопротивление трансреактора TAV определяется тем же условием. При и Сопротивление вторичной обмотки трансреактора 4. Список используемой литературы Овчаренко Н. И. Проектирование аналоговых и цифровых измерительных преобразователей мощности. М.: Издательство МЭИ, 1994. Овчаренко Н. И. Аналоговые и цифровые измерительные преобразователи мощности автоматических ...
... преобразования в заданное число раз. Кроме того, динамический диапазон мостовых ПНТ по входному сигналу теоретически может достигать диапазона ±ЕП, что принципиально недостижимо в преобразователях напряжение-ток на основе дифференциального каскада. Это особенно важно при проектировании низковольтных прецизионных схем. На рисунке 12 представлены результаты моделирования схемы мостового ПНТ. ...
... . Для малых значений входных напряжений коэффициенты усиления ДК2 и ДК3: Так как выходы ДК2 и ДК3 соединены перекрестно, то их выходные напряжения вычитаются: . Таким образом, осуществляется перемножение входных сигналов. Так как , то , где коэффициент Выражение для U2 является точным только при малых значениях Ux и Uy, не превышающих примерно 20 мВ. При больших входных напряжениях ...
... сим=()*tg(k*l)/=(7,5/π)* tg(0,837*1,875)/7,5 =8,72*10-3м; Нд несим=0,5*Нд сим=4,36*10-3 м. UД=ЕД*НД=0,0000394*4,36*10-3=1,72*10-6 В Проверено выполнение следующего условия: UДUтр1,72*10-60,21*10-6. Из этого вытекает, что радиоприёмное устройство будет уверенно принимать сигнал. Рассчитано номинальное значение отношения сигнал/шум на входе приёмника: 9(1,72*10-6/0,21*10-6)2 = ...
0 комментариев