Министерство образования и науки Украины

Донецкий политехнический техникум

Кафедра физики

 

 

Реферат:

Акустические свойства полупроводников

Выполнил: Филенко М.С.

Проверил: Семенов А.И.

Донецк, 2002

План

 

1. КАК УСТРОЕН ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПОЛУПРОВОДНИК

2. ПОГЛОЩЕНИЕ И УСИЛЕНИЕ ЗВУКА

3. НЕЛИНЕЙНЫЕ ЭФФЕКТЫ ПРИ УСИЛЕНИИ ЗВУКА

4. УСИЛЕНИЕ АКУСТИЧЕСКИХ ШУМОВ И СВЯЗАННЫЕ С ЭТИМ ЯВЛЕНИЯ

5. ЗВУКОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

6. Заключение

 



1. КАК УСТРОЕН ПЬЕЗОЭЛЕКТРИЧЕСКИЙ

ПОЛУПРОВОДНИК

Мы уже говорили, что в полупроводниках имеет смысл изучать в первую очередь те акустические эффекты, которые обусловлены взаимодействием звука с электронами проводимости. Ведь именно небольшое число электронов проводимости отличает полупроводник от диэлектрика. Типичные концентрации электронов в тех случаях, которые нас будут интересовать, составляют 1011 - 1016 см-3.

Рассмотрим акустические эффекты только в одном типе полупроводников, а именно в пьезоэлектрических полупроводниках. Акустические эффекты в них наибо­лее ярко выражены, лучше и подробнее всего исследо­ваны.

Пьезоэлектрики - это такие кристаллы, в которых под влиянием однородной деформации возникают дипольный момент, а значит, и электрическое поле, пропорциональные деформации. Наличие пьезоэлектрических свойств тесно связано с симметрией кристалла. Пояс­ним это на модели ионной решетки, изображенной на рис. 1,а. На этом рисунке положительные попы закрашены. а отрицательные изображены светлыми кружка­ми. Видно, что если эту решетку подвергнуть однород­ной деформации, то она не поляризуется (рис. 1,б). Рассмотрим теперь решетку, изображенную на рис, 2,а. Если эту решетку подвергнуть деформации растяжения в направлении, указанном стрелкой, то она поляризует­ся, поскольку «центры тяжести» положительных и отри­цательных ионов при этом сдвигаются друг относитель­но друга (рис. 2, б, в). Наоборот, если поместить такую решетку в однородное электрическое поле, она деформируется. Деформация кристалла, пропорциональная приложенному электрическому полю, называется прямым пьезоэлектрическим эффектом; возникновение электри­ческой поляризации при деформации — обратным пье­зоэлектрическим эффектом.

Пьезоэлектрический эффект существует в целом ряде полупроводников — CdS, Zn0, GaAs, InSb, Те и др. Большинство опытов, в особенности на первом эта­пе, было проведено на CdS — этот полупроводник яв­ляется довольно сильным пьезоэлектриком и в то же время фотопроводником (т. е. изменяет свою проводи­мость при освещении). Поэтому в нем, как уже говорилось, легко можно отделять электронные эффекты.

Если в пьезоэлектрике распространяется звук, т. е. волна деформации, то она сопровождается электриче­скими полями, обладающими пространственной и вре­менной периодичностью звуковой волны. Эти поля про­дольные, т. е. параллельные направлению распростра­нения звука. Можно сказать, что в пьезоэлектриках всякая звуковая волна сопровождается волной продоль­ного электрического поля (мы его будем называть пьезоэлектрическим полем). В качестве оценки напря­женности этих полей можно привести следующую циф­ру: при распространении звука в таком сильном пьезо­электрике, как CdS, при плотности потока звуковой энергии S порядка 1 Вт/см2 амплитуда напряженности переменного поля может достигать нескольких сотен вольт на сантиметр.

Выясним теперь, как влияет пьезоэлектрический эф­фект на распространение звука в пьезодиэлектриках. Пусть продольный или поперечный звук распространя­ется в пьезодиэлектрике вдоль оси симметрии кристал­ла, которую назовем осью ОХ. Деформация в такой волне характеризуется величиной du/dx, где и{х) — смещение точки кристалла в звуковой волне. В непьезоэлектрическом кристалле при такой деформации воз­никает упругое напряжение S:

S = λ du/dx

где К — модуль упругости. Это соотношение выража­ет известный закон Гука. В пьезоэлектрике, как мы ви­дели, при деформации возникает дипольный момент, на который действует электрическое поле Е. В резуль­тате при наличии поля Е в пьезоэлектрнке упругое на­пряжение равно:

 

S = λ du/dx + βE (1)

 

 

где β — так называемый пьезоэлектрический модуль. Кроме того, при деформации в пьезоэлектрике возника­ет дополнительная поляризация. Соответственно в обычном соотношении, связывающем электрическую ин­дукцию D с напряженностью поля Е (D=εE, где ε — диэлектрическая проницаемость), появляется допол­нительный член — 4лβ du/dx.

Для вычисления скорости звука в пьезодиэлектрике достаточно соотношение (1) и соотношение между D и Е подставить в уравнение теории упругости:

 

ρ d2u/dt2 = ds/dx

 

 (ρ — плотность кристалла) и в уравнение Пуассона dD/dx = 0 (диэлектрик!). В результате несложных преобра­зований получается величина:


ωd = √ λ ⁄ ρ * (1 + χ)½ , χ = 4πβ²/ελ (2)

Первое слагаемое в выражении для ωd дописывает вклад от близкодействующих упругих сил, которые су­ществуют и в непьезоэлектриках. Второе обусловлено .дополнительными квазиупругими силами, связанными с пьезоэлектрическими полями. Таким образом, роль пьезоэлектрического эффекта определяется величиной χ , которую мы назовем коэффициентом пьезоэлектриче­ской связи. В большинстве известных пьезоэлектриче­ских полупроводников χ не превышает 0,1. Поэтому ве­личину χ можно считать малым параметром теории, что мы и будем делать в дальнейшем. Так, вместо (2) имеем:


ωd = ω0(1 + χ/2), ω0 = √ λ ⁄ ρ

Обратимся теперь к пьезополупроводникам. Как взаимодействуют электроны проводимости с пьезоэлек­трическим полем? Предположим сначала, что звук «замер» — созда­на периодическая в пространстве статистическая де­формация:

 

u(x) = u0 cos qx.

В пьезодиэлектрике из уравнения Пуассона мы сразу бы получили: E = 4πβ du/dx ε. Электрический потенциал поля φ был бы при этом равен (Е = — dφ/dx).

φ0 = 4πβu / ε

А что будет с электронами в полупроводнике? Они перераспределятся в пространстве, стремясь стечь с по­тенциальных «горбов» и заполнить потенциальные «ямы». При этом уменьшится первоначальный потенциал (φ0, или, как говорят, произойдет его экранирование электронами проводимости. Поэтому первый вопрос, который следует решить: как перераспределяются электроны в поле потенциала и каким образом они его бу­дут экранировать? Для решения этого вопроса следу­ет выяснить, как нужно описывать движение электро­на в поле звуковой волны. Это существенно зависит от того, какова величина соотношения между длиной звуковой волны 2л/q и длиной l свободного пробега электронов — какова величина параметра ql. Этот па­раметр играет центральную роль в теории акустических свойств проводников; при различных его значениях электроны по-разному взаимодействуют со звуком. Обычно в пьезоэлектрических полупроводниках ql «1, поэтому пока ограничимся рассмотрением этого слу­чая. В чистых металлах при низких температурах мо­жет выполняться противоположное неравенство. Об этом пойдет речь в следующей главе.

Условие ql «1 означает, что на расстояниях поряд­ка длины звуковой волны электрон успевает много раз столкнуться. В процессе столкновений устанавливается равновесное распределение электронов — электроны лишены индивидуальности, и их можно описывать как объемный заряд, характеризуемый электропроводно­стью о и коэффициентом диффузии D. В результате плотность тока j можно записать в виде:

 

j = σ (- dφ/dx) – e D dn/dx

где n — концентрация электронов. В стационарном состоянии плотность тока j в отсутствие внешнего электрического поля должна обращаются в нуль. Потому

 

n – n0 = - σφ / e D ,

где n0 - равновесная концентрация электронов. Если это выражение подставить в уравнение Пуассона, имеющее в полупроводнике вид:

dD/dx = 4π(n – n0)e ,

и использовать выражение для D, то сразу получим:

φ = φ0 (qR)2 / (1 + ((qR)2) (3)

Здесь - радиус экранирования Дебая — Хюккеля, равный

R = √ εD/4πσ = √ εκΤ/4πe²n0 (4)

(Τ — температура, κ — постоянная Больцмана).

Таким образом видно, что степень экранирования пьезоэлектрнческого потенциала определяется соотно­шением между длиной волны 2π/q и радиусом экрани­рования R.. Обычно говорят о дебаевском экранирова­нии, когда речь идет, например, о кулоновском поле иона: поле «голого» заряда 1/r в результате экраниро­вания приобретает вид: 1/r ехр(- r / R ), В данном же

случае речь идет об экранировании пространственно-периодического потенциала. При qR «1 устанавлива­ется почти полное экранирование, и φ « φ0. Наоборот при qR »1 перераспределение электронов в простран­стве почти не реагирует на коротковолновый звук. Со­отношение (3) можно понять еще и следующим обра­зом. В стационарном состоянии имеет место равнове­сие тока проводимости (вызванного наличием поля) и диффузионного тока (вызванного перераспределением электронов в пространстве). Поэтому электроны пере­распределяются тем в большей степени, чем больше от­ношение электропроводности к коэффициенту диффу­зии (т. е. чем меньше R при заданной величине q). В свою очередь, чем больше электронов перераспредели-

лось в пространстве, тем более эффективно экранирование затравочного потенциала φ0.

Приведем характерные значения радиуса экраниро­вания в типичных случаях. В CdS при комнатной температуре и n0 = 1012 см-3 R = 5 * 10-4 см: при n0 =1014 см-3 R = 5 * 10-5 см.

Учтем теперь, что бегущая звуковая волна не стоит на месте, а распространяется по кристаллу, создавая электрическое поле, меняющееся в каждой точке кри­сталла с частотой звука ω². Поэтому возникает вопрос, за какое же время устанавливается статическая кар­тина экранирования, описанная выше. Таким характерным временем является максвелловское время ре­лаксации:

τ = ε/4πσ

Оно обратно пропорционально электропроводности σ, что естественно: ведь именно благодаря процессам электропроводности электроны проводимости могут перераспределяться в пространстве.

Если величина ωτ мала, то за период звука статиче­ское экранирование успевает установиться почти пол­ностью, и картина пространственного распределения электронов мало отличается от той, которая была бы в статическом случае. При этом, как мы видели, потен­циал φ отличается от φ0 множителем (qR)2 [1 + (qR)2 ]-1. Такой же множитель должен появиться и в слагаемом, описывающем вклад в скорость звука за счет пьезоэлектрического эффекта:

ω = ω0 [1 + χ (qR)2 /2 (1 + (qR)2 )]

В обратном предельном случае, когда ωτ »1, экранирование не успевает установиться, и скорость звука в полупроводнике равна ωd.

 


Информация о работе «Акустические свойства полупроводников»
Раздел: Физика
Количество знаков с пробелами: 45140
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
23575
2
9

... а также других магнитных материалов и зависит от спонтанной намагниченности и напряженности внешнего магнитного поля. В зависимости от природы кристалла, по которому распространяется акустическая волна, механизм ее взаимодействия с электронами проводимости может быть различным. Рассмотрим вначале металлический звукопровод. Представим его в виде одномерной цепочки положительно заряженных ионов, ...

Скачать
20703
2
10

... поглощения к неизвестному. 6. Пример расчета спектральной зависимости коэффициента поглощения селективно поглощающего покрытия в видимой и ИК части спектра Более полные теоретические выкладки с пояснениями вы можете найти в [4]. Зададим толщину мультипленки и количество пленок входящих в ее состав: Определим комплексный показатель преломления (в мультипленке две пленки - q): ...

Скачать
33909
1
5

... граничное условие заключается в отсутствии механических напряжений. Граничным условием для вектора электрической индукции является непрерывность его нормальных составляющих в отсутствии поверхностных зарядов. Поверхностные акустические волны (ПАВ), упругие волны, распространяющиеся вдоль свободной поверхности твердого тела или вдоль границы твердого тела с другими средами и затухающие при ...

Скачать
29466
0
120

... (ПАВ) поставило задачу о необходимости тщательного анализа процессов возбуждения, распространения и рассеяния ПАВ неоднородностями и искусственными дефектами на поверхности твердого тела. В основе функционирования большинства устройств обработки сигналов на ПАВ лежит взаимодействие последних с различного рода управляющими неоднородностями в виде выступов, канавок, поверхностных электродов, ...

0 комментариев


Наверх