2. ПОГЛОЩЕНИЕ И УСИЛЕНИЕ ЗВУКА

При распространении бегущей звуковой волны пространственное распределение электронов стремится следовать за пространственным распределением пьезоэлектрического потенциала. Соответственно пере­менные пьезоэлектрические поля порождают перемен­ные электронные токи, которые и «подстраивают» рас­пределение электронов к распределению потенциала. При протекании этих токов в проводнике должно вы­деляться джоулево тепло. В результате при распространении звука механическая энергия звуковой волны переходит в энергию беспорядочного теплового дви­жения, т. е. происходит поглощение звука. Интенсив­ность поглощаемого звука изменяется по закону:

S (х) =S (0) ехр( - Гх),

 

где S(0) — интенсивность «на входе» кристалла. Вели­чина Г называется коэффициентом поглощения звука.

Для отношения коэффициента поглощения звука Г к величине его волнового вектора q можно получить следующее выражение:

Г / q = χωτ/((1 + q2R2)2 + (ωτ) 2) (5)

Частотной зависимости этого выражения можно дать следующее наглядное объяснение.

Переменный ток, создаваемый пьезоэлектрическим почтем, вызывает перераспределение свободных заря­дов. Перераспределенные заряды, в свою очередь, соз­дают добавочное электрическое поле. Оно, как уже го­ворилось, направлено противоположно первоначально­му электрическому, полю и, следовательно, приводит к уменьшению тока проводимости; τ и есть то время, за которое происходит перераспределение свободных за­рядов. При статической деформации заряды перерас­пределяются и их поле компенсирует (экранирует) пьезоэлектрическое поле. таким образом, что ток ста­новится равным нулю.

Если деформация измеряется с частотой ω, которая гораздо меньше 1/ τ, устанавливается почти полная ком­пенсация. Точнее, поле объемных зарядов в случае пе­ременной деформации, создаваемой звуком, отличается от статического поля на малую величину, пропорциональную ωτ. Поэтому в пьезоэлектрике протекает пере­менный ток, пропорциональный той же малой величине ωτ. Соответственно коэффициент Г, определяемый квадратом плотности тока, оказывается пропорциональным ω2.

В обратном предельном случае больших ωτ поле объемных зарядов за период звука вообще не успевает возникнуть. Поэтому при ωτ »1 коэффициент пропор­циональности между плотностью тока и электрическим полем оказывается вообще независящим от частоты. Не зависит от частоты и коэффициент Г. Член (ωτ) 2 в знаменателе (5) и обеспечивает предельный переход от одного случая к другому. . Наконец, при qR » 1 коэффициент поглощения быст­ро убывает при увеличении частоты. Это связано с тем (уже отмечавшимся выше) обстоятельством, что звуко­вая волна, длина которой гораздо меньше радиуса эк­ранирования, почти не вызывает перераспределения за­ряда даже в статическом случае.

Коэффициент поглощения достигает максимально­го значения при частоте ωm = ω0/R, т. е. когда длина волны равна 2πR; максимальное значение Гmo коэффи­циента поглощения равно χ/4R.

Характер частотной зависимости коэффициента по­глощения определяется величиной ωmτ. Если ωmτ « 1, то максимум получается сравнительно острым.

В противоположном предельною случае коэффици­ент поглощения растет пропорционально ω2 вплоть до частот порядка 1/τ, после чего его рост становится очень медленным. Максимум в этом случае оказывает­ся более пологим. При ω » ωm коэффициент поглоще­ния во всех случаях убывает пропорционально ω2. Се­мейство Г(ω) при разных значениях ωmτ приведено на рис. 3.

Интересно проследить характер зависимости коэф­фициента поглощения Г от электронной концентрации n0. Обычно проводимость σ пропорциональна n0: σ = е n0μ, где μ - так называемая подвижность электро­нов. Таким образом, максвелловское время релаксации τ обратно пропорционально n0. Радиус экранирования R, как мы видели, обратно пропорционален √ n0 (см. (4)). Поэтому при малых концентрациях электро­нов коэффициент Г прямо пропорционален n0, а при больших - обратно пропорционален n0. Существует, таким образом, при любой частоте (о некоторая промежуточная концентрация nw, при которой коэффициент Г максимален.

Оценим коэффициент поглощения Г для какого-ни­будь типичного случая. Рассмотрим, например, попереч­ный звук в CdS, скорость которого ω0 = 1,8 х 105 см/с. Пусть n0 = 5 х 1012 см-3, ω = 3 х 108 с-1, μ = 300 см2/Вс, χ = 0,036, ε = 9,4, Т=300 К. Тогда τ = 3,5 х 10-9 с, R= 1,6 х 10-4 см, q= 1,7 х 103 см-1, и мы получаем, что коэффи­циент Г составляет около 30 см-1. Это означает, что на расстоянии в 1/30 ~ 0,03 см интенсивность звука зату­хает в с раз, т. е. теория предсказывает сильное затуха­ние уже при таких малых концентрации и частоте.

А теперь мы переходим, пожалуй, к самому инте­ресному вопросу — анализу влияния электрического поля на поглощение звука. Представим себе, что к пьезоэлектрическому полупроводнику, в котором рас­пространяется звуковая волна, приложено постоянное электрическое поле Е.

Под влиянием постоянного поля Е возмущения элек­тронной концентрации, созданные звуковой волной, движутся со скоростью дрейфа электронов:

 

V = μE

Чтобы в этом случае найти изменение электронной концентрации под влиянием переменного поля звуко­вой волны, удобно перейти к движущейся системе ко­ординат, скорость которой по отношению к кристалли­ческой решетке равна V. В этой системе можно пользо­ваться выражениями для распределения электронной концентрации, полученными в отсутствие постоянного электрического поля. Нужно только учесть, что в силу эффекта Доплера частота звука в движущейся систе­ме координат изменяется и оказывается равной ω — qV, где q — волновой вектор звука. В итоге в выражении (5) для отношения Г/q следует произвести замену ω → ω - qV. Это дает:

Г/q = χω(ω – qV)τ/ω0((1 + q2R2) + (ω – qV22)

В простейшем случае, когда направление распрост­ранения звука параллельно дрейфовой скорости, коэф­фициент поглощения обращается в нуль при V = ω, т. е. когда дрейфовая скорость электронов становится рав­на скорости звука. При V > ω коэффициент поглощения меняет знак. При Г<0 плотность потока звуковой энер­гии изменяется по закону:

S(x)=S(0)exp (-Гх) = S(0) ехр (│Г│х).

т. е. поглощение звука сменяется его усилением.

Зависимость коэффициента поглощения от постоян­ного электрического поля (точнее, от дрейфовой ско­рости электронов) приведена на рис. 4. Видно, что кри­вая зависимости Г(V) антисимметрична относительно линии V = ω. Отметим еще одно важное обстоятельст­во: если при распространении в прямом направлении (направлении дрейфа) звук усиливается, то при рас­пространении в обратном направлении он обязательно затухает. Однако коэффициент поглощения при этом может быть меньше коэффициента усиления при пря­мом прохождении.

При неизменной дрейфовой скорости V коэффици­ент усиления как функция частоты достигает макси­мума при ω = ωm как и в случае поглощения звука. Аб­солютный максимум коэффициента усиления по отно­шению к изменению и частоты и дрейфовой скорости при заданной концентрации равен опять-таки Гmo — максимальному значению коэффициента поглощения.

В чем физическая основа усиления звука? Для то­го чтобы ответить на этот вопрос, посмотрим на погло­щение звука с несколько иной точки зрения. Можно сказать, что поглощение звука определяется фазовым сдвигом между деформацией решетки ди/дх и пьезо­электрическим полем Е. В пьезодиэлектрике фазовый сдвиг отсутствует, и пьезоэлектрический эффект не при­водит к поглощению звука - он лишь изменяет эффек­тивную жесткость решетки (скорость звука). В пьезополупроводнике пьезоэлектрическое поле отстает по фазе от деформации решетки. Соответствующий сдвиг фаз пропорционален ют; этой же величине пропорцио­нален коэффициент поглощения. При включении элек­трического поля возмущения концентрации электронов, созданные звуковой волной, дрейфуют со скоростью V. Это приводит к уменьшению сдвига фаз и, следователь­но, к уменьшению поглощения. В более сильных элек­трических полях пьезоэлектрическое поле опережает по фазе деформацию решетки. При этом происходит пе­редача энергии электрического поля звуковой волне — ее интенсивность нарастает. Именно эти процессы мате­матически описываются формулой (6).

 До сих пор мы в наших рассуждениях не учитыва­ли поглощения звука кристаллической решеткой. Что­бы его учесть, нужно к выражению для коэффициента электронного поглощения звука добавить коэффициент решеточного поглощения. В результате значение коэф­фициента поглощения оказывается больше, а коэф­фициента усиления — меньше, .чем в отсутствие реше­точных эффектов. Полный коэффициент усиления об­ращается в нуль не при каком-нибудь одном, а при двух значениях дрейфовой скорости — Vl и Vll на рис. 4.

Оценим коэффициент усиления в каком-нибудь ти­пичном случае. Обратимся с этой целью к примеру, рассмотренному на стр. 16. При (Vω)/ω)== 0,l мы по­лучаем, что Г~5 см-1. Если увеличить дрейфовую ско­рость и рассмотреть случай {Vω)/ω = 1, то Г~30 см-1. Это значит, что интенсивность звука возрастает в е раз на расстоянии в 1/30~0,03 см. При дальнейшем возра­стании дрейфовой скорости коэффициент усиления на­чинает убывать.

Приведем в качестве примера экспериментальные зависимости коэффициента поглощения (усиления) от электрическою поля, наблюдавшиеся в кристалле CdS (рис. 5). Как уже говорилось, CdS—фотопроводник. Начало отсчета затухания на рис. 5 соответствует за­туханию в неосвещенном образце. При изменении уров­ня освещенности изменяется проводимость кристалла, а следовательно, и т. Так получены кривые В и С, соответствующие частоте 45 МГц и значениям (от 4,2 и 4,8 соответственно. Кривая А получена на частоте 15 МГц; <от=0,83. Из рисунка видно, что при значении электрического поля ~750 В/см коэффициент поглощения из­меняет знак—поглощение сменяется усилением.

Обратим внимание на то, что теория дает очень большие значения коэффициента усиления. Усиление звука в пьезополупроводниках наблюдалось в целом ряде экспериментальных работ. В некоторых случаях существующая теория удовлетворительно описывала данные опыта. Иногда, однако, усиление, наблюдавшее­ся экспериментально, оказывалось гораздо меньше тео­ретического. Такое расхождение, возможно, связано с решеточным поглощением звука и некоторыми другими явлениями (которые не учтены в этом простейшем ва­рианте теории).

А может быть, дело здесь в следующем. В простей­шей теории, описанной выше, предполагается, что изме­нение концентрации электронов и электрического поля пропорционально деформации решетки в звуковой вол­не (линейная теория). При больших амплитудах зву­ковой волны линейный закон становится непримени­мым — в таком случае говорят, что имеют место нелинейные эффекты. В процессе усиления звука его ин­тенсивность может возрасти на много порядков, поэто­му такие эффекты могут быть важны. О нелинейных эффектах речь пойдет ниже, и мы увидим, что они могут существенно изменить картину усиления звука.

При приложении к пьезополупроводнику электриче­ского поля изменяется не только поглощение. Изменяя сдвиг фаз между волнами деформации и пьезоэлект­рического поля, внешнее электрическое поле изменяет л скорость звука.

Отметим, что скорость звука зависит не только от величины, но и от направления электрического поля по отношению к направлению распространения звука. Соответственно скорости волн, распространяющихся вдоль и навстречу полю, различны. Это обстоятельство по­лезно иметь в виду; мы вспомним о нем в следующем разделе.


Информация о работе «Акустические свойства полупроводников»
Раздел: Физика
Количество знаков с пробелами: 45140
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
23575
2
9

... а также других магнитных материалов и зависит от спонтанной намагниченности и напряженности внешнего магнитного поля. В зависимости от природы кристалла, по которому распространяется акустическая волна, механизм ее взаимодействия с электронами проводимости может быть различным. Рассмотрим вначале металлический звукопровод. Представим его в виде одномерной цепочки положительно заряженных ионов, ...

Скачать
20703
2
10

... поглощения к неизвестному. 6. Пример расчета спектральной зависимости коэффициента поглощения селективно поглощающего покрытия в видимой и ИК части спектра Более полные теоретические выкладки с пояснениями вы можете найти в [4]. Зададим толщину мультипленки и количество пленок входящих в ее состав: Определим комплексный показатель преломления (в мультипленке две пленки - q): ...

Скачать
33909
1
5

... граничное условие заключается в отсутствии механических напряжений. Граничным условием для вектора электрической индукции является непрерывность его нормальных составляющих в отсутствии поверхностных зарядов. Поверхностные акустические волны (ПАВ), упругие волны, распространяющиеся вдоль свободной поверхности твердого тела или вдоль границы твердого тела с другими средами и затухающие при ...

Скачать
29466
0
120

... (ПАВ) поставило задачу о необходимости тщательного анализа процессов возбуждения, распространения и рассеяния ПАВ неоднородностями и искусственными дефектами на поверхности твердого тела. В основе функционирования большинства устройств обработки сигналов на ПАВ лежит взаимодействие последних с различного рода управляющими неоднородностями в виде выступов, канавок, поверхностных электродов, ...

0 комментариев


Наверх