МІНІСТЕРСТВО ОСВВІТИ І НАУКИ УКРАЇНИ
Аморфні метали
Курсова робота
ЗМІСТ
ВСТУП
I. АМОРФНІ МЕТАЛЕВІ СПЛАВИ, ПРОЦЕС УТВОРЕННЯ ТА СТРУКТУРА
1.1 Історія відкриття металевих стекол
1.2 Структура аморфного стану
1.3 Утворення аморфних матеріалів
II. КРИСТАЛІЗАЦІЯ АМОРФНИХ МЕТАЛЕВИХ СПЛАВІВ
2.1 Аморфні метали
2.2 Протікання процесу аморфізації
2.3 Механізми кристалізації аморфних сплавів
2.4 Методи отримання аморфних і наноструктурних матеріалів
III. МЕТОДИ ОДЕРЖАННЯ АМОРФНИХ МЕТАЛІВ
3.1 Методи розпилювання
3.2 Загартування на охолоджуючих поверхнях
3.2.1 Дискретні методи
3.2.2 Безперервні методи
3.3 Іонно-плазмове розпилення
3.4 Аморфізація сплавів шляхом пластичної деформації
IV. АМОФНІ ФЕРОМАГНЕТИКИ ВЛАСТИВОСТІ І ЗАСТОСУВАННЯ
4.1 Аморфні феромагнетики
4.2 Використання аморфних сплавів у якості дифузійного бар’єру та для виготовлення магнітних голівок і сенсорів
4.3 Ноу-хау у галузі металевих стекол. Гнучке скло. REAL – скло
ВИСНОВКИ
СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ
ВСТУП
Останніми роками значну роль в створенні нових матеріалів відіграють аморфні і наноструктурні стани. Аморфні і наноструктурні металеві сплави є об'єктами як фундаментальних досліджень, так і прикладних розробок.
В результаті постійного зростання інтересу до таких матеріалів, систематично проводяться міжнародні конференції з різних проблем їх вивчення і практичного використання. Особливо висока активність в даній області постерігається в США, Японії і низці країн Європейського співтовариства. Існують також прогнози про зростання числа областей і об'ємів застосування аморфних і наноструктурних металевих сплавів найближчим часом, що пояснюється унікальним комплексом їх властивостей, поєднанням електромагнітних, міцністних, корозійних і ін. специфічних властивостей цих матеріалів. Використання нових аморфних і наноструктурних сплавів як конструкційних матеріалів перспективно для створення приладів, машин і систем за допомогою яких можна вирішувати проблеми інформаційного забезпечення, енергозбереження, екології, підвищення ресурсу і безпеки сучасної техніки.[1].
Принципові труднощі отримання аморфних металевих сплавів, що отримуються в процесі твердіння розплавів в основному подолані. Проте для наноструктурних металевих матеріалів з характерним розміром порядку ~1–10нм такі труднощі ще збереглися. Це відноситься і до процесів компактування нано-порошків, і до інших відомих методів отримання масивних наноматеріалів. Новими ефективними методами отримання масивних наноматеріалів стає термічна і інші види обробки об'ємних аморфних сплавів.
I. АМОРФНІ МЕТАЛЕВІ СПЛАВИ, ПРОЦЕС УВОРЕННЯ ТА ЇХ СТРУКТУРА
1.1 Історія відкриття металевих стекол
Перші роботи про отримання аморфних плівок при використанні вакуумного напилення з'явилися в 50-і роки. Пізніше аморфні сплави були отримані методом електроосадження сплавів системи NI-P. У 1959 р. Була отримана дуже тонка фольга першого металевого скла сплаву Au+25ат.%Si. Під керівництвом Дювеза, при використанні методу „пострілу”, учені отримали невелику кількість швидко загартованої фольги (луски), структура якої, як показав рентгено-структурний аналіз, була однофазним твердим розчином з границентрированою кристалічною решіткою, утворення якого неможливе врівноважних умовах. Проте повторити експеримент було дуже складно, оскільки установка була поспішно зібрана з скляних трубок. А отримана аморфна фольга була дуже нестабільною. [1]
У 1960 р. Ученими Салі і Мірошніченко був розроблений спосіб отримання аморфних сплавів шляхом двостороннього охолоджування розплавів. Швидкості охолоджування розплаву, що досягаються, складали ~106 К/с.
Коен і Теренбелл показали, що аморфний склад Au-Si близький доскладу сплаву з дуже низькою евтектичною крапкою на рівноважній діаграмі. Встановлена проста умова формування аморфних металевих сплавів – глибока евтектика на рівноважних діаграмах стану, що у свою чергу полегшило пошук систем і складів, які можуть аморфізуватися при загартуванні з розплаву.
1.2 Структура аморфного стану
Відразу ж після отримання аморфних металевих сплавів (АМС) виникли питання, пов'язані з їх атомною структурою. Чи змінився структурний хаос атомів, властивий рідкому стану, при швидкому охолодженні? Якщо змінився, то яким став новий структурний безлад? Нажаль, відповіді на ці питання непрості. Трудності посилюються тим, що до теперішнього часу немає прямих експериментальних методів, які могли б дати однозначну відповідь про структуру аморфних сплавів. Проте за допомогою рентгенівської, нейтронної, електронної дифракції було показано, що в АМС є більш-менш чітко обумовлений на відстані двох-трьох сусідніх атомів так званий ближній порядок . Щоб розібратися в суті цього поняття, скористуємося модельними уявленнями, які служать для ілюстрації просторового расположення атомів в кристалічних гратах. В таких моделях атоми вважаються кульками. Структура кристала утворюється в результаті багаторазового повторення в трьох напрямках одиничної елементарної комірки. Елементарна комірка представляє собою групу атомів, взаємне розташування яких однозначно визначено. На рис. 1.1 а), б) подані моделі структури кристала, елементарної коміркою якої служить група з восьми атомів, розташованих у вершинах куба. Переміщуючи елементарну комірку вздовж трьох взаємно перпендикулярних напрямків, можна побудувати весь об'ємний кристал. Розміщення атомів у вигляді нескінченних рядів, що йдуть далі, називають дальнім порядком.[2]
Повернемося до визначення ближнього порядку. Вважається, що в аморфному металевому сплаві елементарна комірка, характерна для кристалічного стану, також зберігається. Однак при стикуванні елементарних комірок в просторі порядок їх порушується, і стрункість лав атомів, характерна для далекого порядку, відсутня. У цьому легко переконатися, уважно подивившись на модель, представлену на рис. 3, б. Ця структура отримана за допомогою комп'ютерного моделювання. Видно елементарні комірки, що складаються з восьми атомів, характерні для ближнього порядку. При цьому дальній порядок ,очевидно, відсутній.
Близький порядок, який лежить в основі структури аморфних сплавів, є метастабільною системою. При нагріванні до температури кристалізації Tx він перебудовується в звичайну кристалічну структуру. У середньому для більшості аморфних сплавів Tx знаходиться в межах 650-1000 K. На щастя, при кімнатній температурі аморфні сплави можуть зберігати структуру і властивості протягом сотень років.
Особливості структури АМС позначилися і на багатьох фізичних властивостях. Так, незважаючи на те що щільність аморфних сплавів на 1-2% нижче щільності кристалічних аналогів, міцність їх вище в 5-10 разів. Більш висока міцність пов'язана з тим, що в АМС відсутні такі дефекти, як дислокації і межі зерен, властиві кристалічному стану. Навіть вакансії (порожні місця, що утворюються при видаленні атомів з вузлів кристалічної решітки) в аморфних сплавах мають іншу форму і розміри. Вони більше схожі на порожнечі чечевицеподібної форми. Їх називають вакансіонноподобними дефектами. Ці пустоти мають вигляд вузьких щілин, і в них не може розміститися атом. Наявність таких дефектів сильно ускладнює дифузію (проникнення атомів) через аморфні металеві шари.
Рис.1 .1. Комп’ютерні моделі структури дальнього (а) і ближнього (б) порядку
Безлад розташування атомів у вигляді ближнього порядку впливає на електропроводність металевих стекол. Їх питомий електричний опір у 3-5 разів вище, ніж у кристалічних аналогів. Це пов'язано з тим, що при русі електронів через нерегулярну структуру АМС вони відчувають набагато більше зіткнень з іонами, ніж у кристалічній решітці.
... немає строгого порядку в розташуванні атомів. Тільки найближчі атоми - сусіди располагаются в деякому порядку. Але строгою направленості по всім напрямкам одного і того ж елементу структури, яка характерна для кристалів в аморфних тілах, немає. Часто одна і та ж речовина може знаходитися як в кристаллическом, так і в аморфному стані. Наприклад, кварц SiO2, може бути як в кристаллической, так і в ...
... металів за класифікацією О. П. Гуляєва? 8. Назвіть типових представників групи кольорових металів. 9. Назвіть благородні кольорові метали. «Атомно-кристалічна будова металів» Під атомно-кристалічною структурою розуміють взаємне розташування атомів (іонів) у реальному кристалі. Залежно від будови (розташування атомів) тверді тіла поділяють на аморфні та кристалічні. Аморфн ...
... заряджені дефекти впливають також на матричні елементи для переходів між нелокалізованими станами поблизу країв рухливості, створюючи флуктуації потенціалу. РОЗДІЛ 2 ФОТОІНДУКОВАНІ ЗМІНИ ОПТИЧНИХ ПАРАМЕТРІВ ТОНКИХ ШАРІВ НЕКРИСТАЛІЧНИХ ХАЛЬКОГЕНІДІВ 2.1. Структурні одиниці та фізико-хіміні особливості некристалічних халькогенідів Структура склоподібних і аморфних халькогенідів може бути ...
... модели конкурирующих активных компонентов катализаторов. Настоящая работа посвящена исследованию активности Fe и Ni в образовании УНТ на каталитически активных поверхностях в условиях реакции конверсии метана. Особенности методики получения и исследования наноуглерода Парциальное окисление метана проводили при 800 °С и давлении 0,15 МПа на катализаторе Rh/Al2O3. Удлиненный образец сплава SUS ...
0 комментариев