2.3 Механізми кристалізації аморфних сплавів
Температура кристалізації аморфних металів та сплавів не є постійною величиною як, наприклад, температура плавлення. Температура кристалізації аморфних металів залежить від швидкості їх нагрівання. Тому для дослідження процесу кристалізації використовують два методи: ізотермічний, та при постійній швидкості нагрівання. Процес кристалізації аморфних металів – це зародковий процес, тому швидкість процесу кристалізації залежить від швидкості утворення кристалічних центрів (зародків кристалізації) та від швидкості їх росту. Для протікання кристалізації необхідно, щоб молекули почали розташовуватися у визначеному порядку. Для цього процесу рухливість часток повинна бути вища за певне значення, а це можливе тільки при певному співвідношенні між енергією молекул, та енергією їх взаємодії. При температурах нижчих за певне значення енергії теплового руху стає недостатньо для забезпечення взаємного руху молекул, та кристалізація припиняється. Імовірність кристалізації з’являється тільки тоді, коли температура підвищується до значення . [4]
Механізми кристалізації поділяють на чотири типи: поліморфна, первинна, евтектична та кристалізація з розшаруванням.
Поліморфна кристалізація – це кристалізація, при якій аморфний сплав без усякої зміни концентрації переходить у пересичений твердий розчин, метастабільний чи стабільний кристалічний стан.
Первинна кристалізація – це кристалізація при якій відбувається кристалізація фази, хімічний склад якої відрізняється від складу аморфної фази.
Евтектична кристалізація – це кристалізація при якій проходить виділення двох чи більше кристалічних фаз.
Кристалізація з розшаруванням – це кристалізація при якій спостерігається поділ на різні аморфні фази, кожна з яких кристалізується окремо.
Взагалі процес кристалізації аморфного сплаву дуже залежить від технології, та способу його виробництва.
2.4 Методи отримання аморфних і наноструктурних матеріалів
Сфера практичного застосування матеріалів, що постійно розширюється, з нерівноважними кристалічними, і аморфними структурами, що володіють цінним комплексом поєднанням властивостей, стимулює розробку нових методів виробництва і дослідження фізичних основ вже існуючих методик. Остання обставина грає важливу роль, оскільки структурно-залежні властивостіі, термічна стійкість нерівноважних матеріалів істотно залежать від умов їхотримання (тобто від їх передісторії).
В даний час відомо декілька десятків методів отримання матеріалів знерівноважною структурою, які залежно від початкового стану матеріалувключають термічне і іонно-плазмове розпилювання, хімічне і електрохімічнео садження, гарт з рідкого стану і механічне легування (механо-активований синтез).[4]
ІІІ. МЕТОДИ ОДЕРЖАННЯ АМОРФНИХ МЕТАЛІВ
3.1 Методи розпилювання
Методи розпилювання, що застосовуються для швидкого загартування з розплаву, розрізняються по механізму розпилювання і за способом охолоджування крапель, що утворюються. Дроблення струменя розплаву здійснюється зазвичай при зіткненні її із струменем газу або рідини, або при її обертанні. Розмір частинок, що отримуються цими методами, лежить в діапазоні від декількох міліметрів до субмікронних величин, залежно від металу, що розпилюється, і параметрів процесу. Краплі розплаву можуть охолоджуватися в процесі природного випромінювання при вільному польоті або в результаті теплообміну з газовим середовищем, або можуть бути загартовані в рідкому середовищі або на охолоджуваній поверхні.
Швидкість гарту зростає із зменшенням характерного розміру гартованих крапель і збільшенням коефіцієнта тепловіддачі (який має низьке значення при охолоджуванні випромінюванням і максимальний при хорошому контакті з охолоджуючою поверхнею).
Ці методи дуже корисні для дослідження аморфного стану матеріалів, оскільки вони дозволяють отримувати дуже високі швидкості охолоджування (>108 К/с), і дають можливість отримувати матеріал істотно великим, в порівнянні з рівноважними фазами надлишком вільної енергії. Цими методами можна отримати аморфні структури складів, не аморфізующихся при гарті з рідини.
3.2 Загартування на охолоджуючих на поверхнях
Більшість відомих в даний час аморфних металів можна отримати гартом з розплавів при достатньо високих швидкостях охолоджування (>105К/с). Для досягнення таких швидкостей охолоджування метод гартування повинен забезпечувати високий коефіцієнт тепловіддачі на межі між розплавом і підкладкою (охолоджуючим середовищем) і достатньо тонкий перетин металу, для того, щоб тепло відводилося за короткий проміжок часу.
Зазвичай при загартуванні з рідини використовують тверді металеві охолоджуючі поверхні, оскільки тепло передаване газам і рідинам менше тепла передаваного твердим тілам. Основний принцип загартування з розплаву полягає в тому, що розплавлений метал розтікається по охолоджуючій поверхні тонким шаром і згодом швидко твердне.[5]
Методи загартування прийнято розділяти на дискретні і безперервні.
Дискретні методи. Перші зразки аморфного металу були отримані за допомогою методу пострілу (gun technique) (рис. 3.1а). У цьому методі найбільша порція розплавленого металу виштовхується з трубки ударною хвилею у вигляді маленьких крапельок. Ці краплі стикаються з поверхнею підкладки, розтікаються по ній, перекриваються і утворюють фольгу неправильної форми і змінної товщини. Товщина фольги може коливатися від 5 до 25 мкм. Така нерівномірність фольги по товщині говорить про те, що зразок складається з областей, загартованих при різних швидкостях охолоджування (105–108 К/с) і, отже, що мають різну структуру.
Рис. 3. 1 – Схеми установок для отримання тонких плівок
а – метод пострілу на масивну підкладку; б – метод „мелена і ковадла”
Інша група дискретних процесів класифікується як метод „мелена і ковадла” (hammer and anvil) (мал. 3.1б), в якому розплавлена крапля металу розплющується рухомими назустріч один одному поршнями. В результаті отримують фольгу правильної форми з товщиною від 20 50 мкм. Швидкість охолоджування при такому методі охолоджування складає 106 – 107 К/с. Проте такий гарт є в деякій мірі невідтворним із-за труднощів, пов'язаних з особливостями експерименту.
Оскільки в результаті описаних методів гарту з рідкого стану виходять неоднорідні формою і складу зразки, здавалося, що ці матеріали так і залишаться лабораторною чудасією. Але великий скачок вперед був зроблений при розробці безперервних процесів отримання швидкозагартованих зразків правильної форми, забезпечуюче відтворення і контроль фізичних і механічних властивостей.
Безперервні методи. З безперервних методів першим був застосований метод гартування у валяння (twin roll technique) (рис.3.2а). У цьому методі розплавлений метал прямував у вузький зазор між двома швидкообертаючими валами і набуває форми вузької стрічки або смужки. Цей метод має перевагу за рахунок двостороннього охолоджування з хорошим поверхневим контактом, проте ним важко керувати. Як правило, розплав або дуже рано твердне (до того, як досягне точки мінімального зазору між валяннями), так що прокатується вже холодна стрічка, або надто пізно – стрічка виходить із зазору лише частково затверділа. Швидкість охолоджування при такому методі гарту складає близько 105 – 107 К/с.[5]
в
Рис.3.2 – Методи безперервного гарту: а – гарт у валяння; б – гарт на диску (спінінгування розплаву); в-витягування розплаву обертовим диском
Найбільш широко використовуваний метод відомий під назвою „спінінгування розплаву” (melt spinning) (рис. 3.2б). Загальна схема полягає в тому, що струмінь розплавленого металу прямує на швидкорухаючу охолоджуючу поверхню, внаслідок чого отримують стрічку завтовшки від 20 до 100 мкм. Спіннінгування розплаву може виконуватися як на внутрішній, так і на зовнішній стороні барабана. Швидкість охолоджування стрічок товщиною менше 100 мкм дорівнює 105–107 К/с, а в екстремальних випадках може досягати 108 К/с.Ще один метод показаний на (рис. 3.2в). У цьому методі загострений обід диска захоплює розплав, який потім твердне і мимоволі відділяється у вигляді коротких дротиків. Частота обертання диска або циліндра повинна бути такою, щоб забезпечити лінійну швидкість обода неменше 50cм/с.
Лазерне глазурування (laser glazing) є новим методом загартування. Тут лазерний промінь використовується для проплавлення тонкого шару на поверхні зразка, після чого розплав гартується в результаті контакту з тими, що знаходяться під ним холодний матеріал. Цей метод використовують для обробки шару аморфізуючогося складу, який заздалегідь нанесений на поверхню іншого сплаву, оскільки сплави здібні до аморфізації мають погані властивості в кристалічному стані.[5]
3.3 Іонно-плазмове розпилення
Інший спосіб одержання металевих стекол - високошвидкісне іонно-плазменне розпилення металів і сплавів [6]. Найбільше розповсюдження отримав пристрій, заснований на чотирьох-електродній схемі розпилювання (рис. 3.3). Вся система знаходиться у вакуумній камері, що містить газ аргон під тиском 0,5 Па. Нагріваючи електричним струмом вольфрамову спіраль 3, "видобувають" електтрони, що переміщуються в бік анода 2 під дією потенціалу, створюваного джерелом високої напруги (близько 3 кВ). По дорозі електрони зіштовхуються з атомами аргону і іонізують їх. Іони аргону утворюють плазму. Після того як встановився безперервний процес створення іонів, тобто "засвітилась" плазма, до мішені 4 прикладується негативний потенціал, щоб витягнути позитивно заряджені іони інертного газу з плазми і направити їх на мішень. Іони аргону, маючи досить велику енергію, стикаючись з поверхневими атомами мішені і вибивають їх. Цей процес називається розпиленням. Розпилювані атоми залишають мішень і лягають на підкладку 5. Процес ведуть таким чином, щоб атоми, які вилітають із мішені, мали невелику кінетичну енергію. Потрапляючи на підкладку, вони не відскакують, як пружні м'ячики, а одразу ж прилипають до її поверхні, тобто замерзають. Цей процес осадження атомів на холодній підкладці еквівалентний охолодженню з дуже високою швидкістю. Розрахунки показують, що швидкість охолодження досягає значень 1010 К / с. Аморфні металеві сплави виходять у вигляді напиленого шару 6 товщиною від 1 до 1000мкм.[6].
Рис.3.3 Схема установки для чотирьохелектродного розпилення: 1 - вакуумна камера, 2 - анод, 3 - катод, 4 - мішень, 5 - підкладка, 6 - аморфний матеріал
... немає строгого порядку в розташуванні атомів. Тільки найближчі атоми - сусіди располагаются в деякому порядку. Але строгою направленості по всім напрямкам одного і того ж елементу структури, яка характерна для кристалів в аморфних тілах, немає. Часто одна і та ж речовина може знаходитися як в кристаллическом, так і в аморфному стані. Наприклад, кварц SiO2, може бути як в кристаллической, так і в ...
... металів за класифікацією О. П. Гуляєва? 8. Назвіть типових представників групи кольорових металів. 9. Назвіть благородні кольорові метали. «Атомно-кристалічна будова металів» Під атомно-кристалічною структурою розуміють взаємне розташування атомів (іонів) у реальному кристалі. Залежно від будови (розташування атомів) тверді тіла поділяють на аморфні та кристалічні. Аморфн ...
... заряджені дефекти впливають також на матричні елементи для переходів між нелокалізованими станами поблизу країв рухливості, створюючи флуктуації потенціалу. РОЗДІЛ 2 ФОТОІНДУКОВАНІ ЗМІНИ ОПТИЧНИХ ПАРАМЕТРІВ ТОНКИХ ШАРІВ НЕКРИСТАЛІЧНИХ ХАЛЬКОГЕНІДІВ 2.1. Структурні одиниці та фізико-хіміні особливості некристалічних халькогенідів Структура склоподібних і аморфних халькогенідів може бути ...
... модели конкурирующих активных компонентов катализаторов. Настоящая работа посвящена исследованию активности Fe и Ni в образовании УНТ на каталитически активных поверхностях в условиях реакции конверсии метана. Особенности методики получения и исследования наноуглерода Парциальное окисление метана проводили при 800 °С и давлении 0,15 МПа на катализаторе Rh/Al2O3. Удлиненный образец сплава SUS ...
0 комментариев