1.2 Определение закона движения системы

Проинтегрируем дифференциальное уравнение (1.20). общее решение этого неоднородного уравнения складывается из общего решения однородного уравнения  и частного решения неоднородного :

S = + ;

Однородное дифференциальное уравнение, соответствующее данному неоднородному, имеет вид:

Составим характеристическое уравнение и найдем его корни:

т.к. n < k => решение однородного уравнения имеет вид:

 

где  частное решение дифференциального уравнения ищем в виде правой части:

 далее получаем:

Сравнивая коэффициенты при соответствующих тригонометрических функциях справа и слева, получаем систему алгебраических уравнений для определения состояния А и В


Решая эту систему получаем следующие выражения:

 А = 0.04 м;

 В = - 0.008 м;

Общее решение дифференциального уравнения:

Постоянные интегрирования определяем из начальных условий, при t = 0 имеем:

Решая эту систему получаем:

 

 


1.3      Определение реакций внешних и внутренних связей

Для решения этой задачи расчленим механизм на отдельные части и изобразим расчетные схемы отдельно для каждого тела. Определение реакций связей проведем с помощью теоремы об изменении кинетического момента и теоремы об изменении количества движения.

Тело №1:  

Тело №2:

Тело №3:  

C учётом кинематических соотношений (1.7) полученную систему уравнений преобразуем к вид:

 

Решая эту систему, получаем выражение для определения реакций связей:



2.         Построение алгоритма вычислений:

(2.1) Исходные данные:

(2.2) Вычисление констант:

 

 

 

 

(2.3) Задание начального времени: t=0;

(2.4) Вычисление значений функций в момент времени t=0;

(2.5) Вычисление реакций связей:

(2.6) Вывод на печать значений искомых функций в момент времени t;

(2.7) Определение значения времени на следующем шаге

(2.8) Проверка условия окончания цикла:

(2.9) Возврат к пункту (2.4).


3. Применение принципа Даламбера-Лагранжа и уравнения Лагранжа второго рода

3.1 Применение принципа Даламбера-Лагранжа

Общее уравнение динамике системы есть математическое выражение принципа Даламбера-Лагранжа.

 

сумма элементарных работ всех активных сил на возможном перемещении системы;

 сумма элементарных работ всех инерции сил на возможном перемещении системы.

Изобразим на рисунке активные силы и силы инерции (рис.3)

Идеальные связи:  

Не учитываем, и не отображаем на расчетной схеме, поскольку по определению работа их реакций на любом возможном перемещении системы равна 0.

Сообщим системе возможное перемещение.

Вычисляя последовательно элементарные работы активных сил и суммируя получим:


(2)

Найдём возможную работу сил инерции:

 

Запишем выражение для главных векторов и главных моментов сил инерции;

Используя кинематические соотношения (1.7), определим:

Теперь возможную работу сил инерции можно преобразовать к виду:

(3)

Далее подставляя выражения (2) и (3) в (1), т.е в общее уравнение динамики получаем

Поделив это уравнение на , получим дифференциальное уравнение вынужденных колебаний системы:

 


Анализ результатов

В данной курсовой работе мы исследовали динамическое поведение механической системы с использованием основных теорем и уравнений теоретической механики. Дифференциальное уравнение движения механической системы получено тремя способами. Во всех случаях коэффициенты , n, k получились одинаковыми и совпали с компьютерной распечаткой, что говорит об их правильности. В процессе решения дифференциального уравнения данной механической системы были получены законы движения первого груза, его скорость и ускорение в зависимости от времени t. На основании этих зависимостей были определены законы изменения всех остальных характеристик механической системы, в том числе и реакции связей.


Информация о работе «Анализ динамического поведения механической системы»
Раздел: Физика
Количество знаков с пробелами: 7698
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
17470
19
17

... груза, его скорости и ускорения, а также динамических реакций внешних и внутренних связей. Результаты расчетов:   5. Анализ результатов вычислений Математическая модель, описывающая поведение исследуемой механической системы, построена при следующих основных допущениях: ...

Скачать
73888
0
0

... полномочий. Оперативность структуры означает возможность реакции системы на изменения обстановки, временные показатели этой реакции и ее цену. Типичным примером организации как сложной системы является производственно-экономическая система (ПЭС). Основным видом производственно-экономических систем является предприятие. Приведем, применительно к промышленному предприятию, некоторые необходимые ...

Скачать
117942
14
14

... второй части курсовой работы и разработать проект с предложением соответствующих рекомендаций для эффективности его введения. 2                   Анализ и оценка эффективности системы управления торгового предприятия (ИП Иванова А.А.)   2.1 Характеристика предприятия ИП Иванова А.А. Предприятие ИП Иванова А.А. находится в г. Шарыпово по адресу ул. Заводская, 8. Вблизи него располагается ...

Скачать
331723
31
44

... Возникшие потребности в научно обоснованных методах и средствах управления нашли свое выражение в кибернетике - науке об управлении и системном анализе, особым предметом исследования которых являются сложные и очень сложные системы окружающего мира. 4.4 Организационные системы Традиционно современная кибернетика рассматривала, в основном, простые и сложные управляемые системы, для которых ...

0 комментариев


Наверх