1.3 КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМА

Кинетостатический расчет, положенный в основу силового расчета механизма, базируется на принципе Д’Аламбера, который в общем случае движения звеньев механизмов, совершающих сложное плоское движение, позволяет решить задачу путем сведения сил инерции звеньев к главному вектору инерции Fi и к главному моменту сил Mi.

 (1.3.1)

Знак “-” означает, что вектор силы инерции направлен в сторону противоположную ускорению центра масс.

Массы звеньев рассчитываются с помощью формулы:

 (1.3.2)

где q = 0.1 кг/м,

l – длина звена.

m = P/g,

где P – вес звена (H),

g – ускорение свободного падения.

g = 9.8 м/с2.

Также существует главный момент инерции звена, который приложен к центру масс звена и направлен в противоположную угловому ускорению звена сторону

 (1.3.3)

где  — момент инерции звена,

— угловое ускорение звена.

1.3.1 РАСЧЕТ СИЛ И ГЛАВНЫХ МОМЕНТОВ ИНЕРЦИИ ЗВЕНЬЕВ МЕХАНИЗМА

.

mAB = 2,6 кг.

mCA 0,008кг.

mEF =0.0105кг.

mDC=0.005кг

,

Силы и главные моменты инерции приведены в таблице

  

 

222.3 0.89 0.48 0.5 0 0.89

0.18 0.171

Таблица 1.3.1. Рассчитанные значения сил и моментов инерции звеньев механизма

1.3.2 ОПРЕДЕЛЕНИЕ РЕАКЦИЙ В КИНЕМАТИЧЕСКИХ ПАРАХ

Силовой анализ механизма начинаем с группы Ассура 3-5, наиболее удалённой от ведущего звена. Связи в шарнирах заменяются реакциями и .


В шарнире F реакция неизвестна по модулю и направлена по горизонтали. Обозначим в точке  силу инерции. Обозначим также вес звена FE и вес ползуна Р.

Сумма моментов относительно точки F равна нулю:

 (1.3.4)

где ,— плечи соответствующих силы и веса

Находим :

 (1.3.5)

Составляем векторное уравнение:

 (1.3.6)

С учётом этого уравнения строим замкнутый силовой многоугольник. На чертеже выбираем полюс . От него проводим вектор произвольной длины по направлению силы .Вычисляем масштабный коэффициент:

 (1.3.7)


Далее к вектору  достраиваем другие составляющие уравнения (1.3.6), рассчитывая длину векторов при помощи масштабного коэффициента.

Определяют реакции в кинематической паре 2-4. Реакции в шарнирах A и D нужно разложить на составляющие по направлению осей  и , и перпендикулярные им:  и . Тангенциальные составляющие можно найти, если записать уравнение суммы моментов каждого звена относительно точки С.

Условия равновесия звеньев 2 и 3 соответственно:

 (1.3.9)

  (1.3.10)

 

Рассмотрим уравнение равновесия группы в целом. Запишем векторное уравнение равновесия этой группы:

 (1.3.11)

В этом уравнении все составляющие, кроме , известны по модулю и по направлению. Нужно построить замкнутый силовой многоугольник, откладывая последовательно векторы сил.

 (1.3.12)


Рассмотрим уравнение равновесия группы в целом. Запишем векторное уравнение равновесия этой группы:

 (1.3.13)

В этом уравнении все составляющие, кроме , известны по модулю и по направлению. Нужно построить замкнутый силовой многоугольник, откладывая последовательно векторы сил.

Теперь определим уравновешивающую силу и уравновешивающий момент, действующий на кривошип AB.

На кривошип AB действует шатун силой . Считается, что сила  приложена перпендикулярно звену AB. В этом случае уравнение моментов всех сил, приложенных к кривошипу относительно точки B, имеет вид:

 (1.3.12)

 (1.3.13)

 

 (1.3.14)

 

Найденные при силовом анализе механизма величины представлены в таблице 1.4.

57 48 65 0.22 0.6 0.8 0.79 0.7 0.9 73 1.9

Таблица 1.4. Силовой анализ механизма



Информация о работе «Анализ нагруженности плоского рычажного механизма»
Раздел: Физика
Количество знаков с пробелами: 16711
Количество таблиц: 10
Количество изображений: 2

Похожие работы

Скачать
16884
9
0

... длину вектора и переведем ее обратно:  = 79 мм = 2370 Н 2. ПРОЕКТНЫЙ РАСЧЕТ ЗВЕНЬЕВ МЕХАНИЗМА НА ПРОЧНОСТЬ   2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Такими внешними силами являются силы инерции , моменты инерции  и реакции в кинематических парах R. Под ...

Скачать
31016
5
2

... напряжений; 4)   определить размеры детали и округлить их до ближайших стандартных, согласно которым будет производится подбор сечений. 2.1 Выбор расчетной схемы В результате динамического анализа плоского рычажного механизма были определены внешние силы, которые действуют на каждое звено и кинематическую пару. Проектный расчет на прочность будем производить для группы Ассура 2-4 данного ...

Скачать
17497
10
2

... 74 R05 24.4 0,005 G4 14,7 Fi4 7.02 R04 7.6 G5 24,5 Fi5 8.125 Fур 0,197 2          ПРОЕКТНЫЙ РАСЧЕТ МЕХАНИЗМА НА ПРОЧНОСТЬ В результате динамического анализа плоского рычажного механизма были определены внешние силы, действующие на каждое звено и кинематическую пару. Этими ...

Скачать
17940
3
0

... H 14 23,4 22 R, H 14 24,2 11,8 1 22,2 2. Расчет элементов кинематических пар на прочность. 2.1. Определение внешних сил, действующих на звенья. В результате динамического анализа плоского рычажного механизма определены внешние силы, действующие на звенья и кинематические пары. Такими внешними усилиями являются силы инерции F , моменты инерции M , а также реакции ...

0 комментариев


Наверх