3. Анализ цепей методом угла отсечки

При работе нелинейной цепи с большими амплитудами входного сигнала, когда степенная аппроксимация не дает хороших результатов применяется кусочно-линейная аппроксимация. Работа НЭ происходит при этом с отсечкой выходного тока, и большое применение находит аналитический метод анализа, получивший название метода угла отсечки.

Форма тока в цепи, содержащей НЭ с характеристикой

 (18)

видна из графика, представленного на рисунке 7 (при условии, что на вход подано напряжение ).

Рис. 7. График тока через НЭ при работе с отсечкой тока

График тока имеет характерный вид периодической последовательности косинусоидальных импульсов, которые характеризуются амплитудой  и длительностью 2, где  – угол отсечки, числено равный половине той части периода, в течение которого через НЭ протекает ток. Период повторения импульсов равен . Спектральный состав такого периодического колебания легко определить, разложив функцию тока в ряд Фурье:

 (19)

Угол отсечки легко найти из равенства :

 (20)

Функция тока определяется следующим выражением:

. (21)

При :

. (22)

Амплитуды спектральных составляющих тока через НЭ определяются через коэффициенты Берга:

 (23)

где коэффициенты  являются функциями одного аргумента – угла отсечки , получили название коэффициентов (функций) Берга.

Рис. 8. Графики функций Берга

Анализ графиков функций  позволяет сделать вывод о том, при каких углах отсечки  амплитуды  (n = 0, 1, 2, ...) имеют максимальные или минимальные (нулевые) значения. Это дает возможность с помощью выбора режима работы НЭ (изменяя напряжение смещения ,можно менять ) управлять соотношением амплитуд гармоник в спектре тока через НЭ.

Таким образом, алгоритм вычисления амплитуд гармоник тока через НЭ может быть следующим:

1.    По известным значениям , ,  определяется угол отсечки  с помощью формулы (18).

2.    По формуле (20) или графически определяется величина .

3.    С помощью таблицы или по графикам (рис. 8) находят .

4.    Вычисляются амплитуды гармоник:  k = 1, 2, ….

4. Воздействие двух гармонических сигналов на безынерционный НЭ

Для выявления основных закономерностей рассмотрим реакцию НЭ на воздействие двух гармонических сигналов. Такое воздействие принято называть бигармоническим:

 (24)

Для упрощения анализа на первом этапе воспользуемся аппроксимацией ВАХ нелинейного элемента полиномом второй степени:

 (25)

После подстановки (22) в (23) получим

Выполнив тригонометрические преобразования по формулам

и сгруппировав члены, получим следующее спектральное представление тока

 (26)

Анализ выражения (24) позволяет сделать вывод о значительном обогащении спектра тока по сравнению со спектром входного сигнала. В спектре выходного колебания, кроме слагаемых, имевшихся во входном сигнале – постоянной составляющей и гармоник на частотах ω1 и ω2, возникли гармонические составляющие суммарной и разностной частоты (ω1 + ω2) и (ω1 – ω2), а также компоненты с удвоенными частотами 2ω1, 2ω2.

При увеличении порядка аппроксимирующего полинома проблема вычисления амплитуд спектральных составляющих сводится к громоздким выкладкам, приводить которые в данной лекции нецелесообразно. В самом общем случае, когда ВАХ представлена полиномом n-й степени, спектр тока через НЭ (в случае бигармонического воздействия) будет включать составляющие с частотами

 (27)

где p и q – целые числа, причем (p + q) ≤ n.

Сумма (p + q) называется порядком комбинационного колебания. Комбинационное колебание в общем случае можно записать

 (28)

где k – коэффициент пропорциональности.

При построении различных радиотехнических устройств, являющихся элементами приемных и передающих трактов (модуляторы, детекторы, преобразователи частоты, дифференциальные усилители), приходится использовать нелинейные цепи с бигармоническим воздействием. При этом с помощью фильтрации выделяются нужные комбинационные составляющие (т. е. создающие полезный эффект в нагрузке в зависимости от реализуемой операции) и соответственно подавляются побочные продукты взаимодействия двух сигналов  и . Теперь рассмотрим, как влияют амплитуды воздействующих сигналов  и  на соотношение амплитуд гармоник в спектре выходного тока.

 Параметрический режим работы нелинейного элемента

При реализации некоторых устройств аппаратуры связи, работа которых основана на использовании нелинейных электрических цепей (элементов) и бигармоническом воздействии, часто возникает практическая ситуация, когда амплитуда одного из напряжений значительно больше другого. Например, в преобразователе частоты супергетеродинного радиоприемного устройства амплитуда преобразуемого сигнала значительно меньше амплитуды напряжения местного источника гармонического напряжения (гетеродином). В этих условиях НЭ для сигнала с малой амплитудой выступает в качестве параметрического элемента. Графическая иллюстрация такого режима представлена на рисунке 9.

Рис. 9. Графическая иллюстрация параметрического режима работы

К нелинейному элементу с вольт-амперной характеристикой  приложены два напряжения: гармонический сигнал с большой амплитудой  и малое напряжение , в общем случае не обязательно гармоническое.

Учитывая малую величину напряжения  по сравнению c , можно считать участок характеристики, на которой в данный момент времени действует напряжение , практически линейным (фрагмент ВАХ на рисунке 9). При этом напряжение  действует как изменяющееся во времени напряжение смещения, т. е. источник  перемещает рабочую точку на характеристике по закону . Таким образом, можно считать, что для малого колебания  нелинейный элемент является линейным, но с изменяющейся по закону  крутизной . Такой элемент и называется параметрическим, причем в роли переменного параметра выступает крутизна вольт-амперной характеристики.

Выше уже говорилось о том, что очень важно обеспечить минимизацию побочных продуктов взаимодействия напряжений  и , а также подчеркнуть, по возможности, полезную комбинационную составляющую. Рассмотрим условия, при которых может быть решена эта задача, для чего получим аналитическое выражение для тока через НЭ в общем виде.

Если на вход НЭ с характеристикой  воздействуют два колебания: , причем выполняется неравенство

 (29)

а амплитуда напряжения  такова, что оно не выходит за пределы рабочей области ВАХ –  < 1 В, то выражение для тока через НЭ можно представить в виде ряда Тейлора по степеням малого напряжения  вблизи изменяющейся во времени (по закону ) рабочей точки.

. (30)

 

В этом выражении первое слагаемое  – ток, величина которого определяется только источником , а все остальные слагаемые – добавка к току  зa счет действия источника малого сигнала . Очевидно, что первая производная тока  – крутизна характеристики  – функция напряжения  (закон ее изменения во времени показан на правой части графика на рисунке 9). С учетом введения  выражение (28) можно переписать в виде

. (31)

В общем случае, когда  – чётная периодическая функция, ток  и все коэффициенты ряда (29) , , , ... будут четными периодическими функциями, следовательно, их можно представить рядами Фурье, содержащими только косинусные слагаемые:

 (32)

Если подставить все выражения (30) в (29) и выполнять элементарные (но очень громоздкие) преобразования, можно убедиться, что в спектре тока через НЭ будет присутствовать множество комбинационных составляющих, число которых не меньше, чем в (25). При этом амплитуды тока нелинейно будут зависеть от  и . Таким образом, неизбежно возникают нелинейные искажения в выходном сигнале. В то же время эти искажения существенно меньше, чем при соизмеримых амплитудах воздействующих сигналов. Чтобы в этом убедиться, достаточно принять во внимание, что << l B, следовательно, все слагаемые в (29), начиная с третьего, являются малостями более высоких порядков и ими можно пренебречь без большой (с точки зрения инженерной практики) погрешности. Таким образом, учитывая справедливость неравенства

 (33)

можно записать:

 (34)

Из последнего выражения видно, что для колебания  с малой амплитудой нелинейный элемент является линейным (т. к. выражение (32) – линейная функция ), но с переменным параметром – крутизной, которая изменяется во времени под воздействием большого напряжения :

Очевидно, что чем меньше амплитуда напряжения , тем меньше погрешность от замены (29) на (32), меньше количество и ниже уровень побочных (нежелательных) комбинационных составляющих в спектре выходного тока.

Если работа нелинейной цепи в этом случае происходит без отсечки тока НЭ, то ток через НЭ вообще не содержит комбинационных составляющих, приводящих к искажению выходного колебания (выходным колебанием считается ток на частоте ω1 + ω2 или |ω1 - ω2|). В этом случае устройство на основе данной нелинейной цепи будет линейной параметрической системой.

Таким образом, для получения линейной параметрической цепи на основе НЭ необходимо выполнить ряд условий:

1. Обеспечить работу с малым уровнем входного сигнала.

2. Использовать фильтр на выходе цепи, выделяющий полезное колебание и эффективно подавляющий нежелательные продукты взаимодействия u1 и u2.

3. Обеспечить соответствующий режим работы НЭ, при котором уменьшается уровень ненужных комбинационных составляющих.

4. Подбирать НЭ с ВАХ, наиболее близкой по форме к квадратичной параболе.


Библиографический список

1.         Гоноровский И.С. Радиотехнические цепи и сигналы.– М.: Высш. шк., 1986.– С. 222-229.

2.         Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов.– М.: Наука, 1986.– С. 502-504.


Информация о работе «Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях»
Раздел: Физика
Количество знаков с пробелами: 20197
Количество таблиц: 1
Количество изображений: 14

Похожие работы

Скачать
352659
353
269

... для графа на рис. 3, приняв, что дерево образовано ветвями 2, 1 и 5 Ответ: B= Решить задачу 5, используя соотношения (8) и (9).  Теория / ТОЭ / Лекция N 3. Представление синусоидальных величин с помощью векторов и комплексных чисел. Переменный ток долгое время не находил практического ...

Скачать
12567
0
12

... второго порядков, работающие в условиях действия случайных возмущений, и получить аналитические выражения для этих систем, что является его достоинством. На практике используют комбинацию различных методов. Анализ нелинейного режима работы системы ЧАП Для определения некоторых характеристик системы, произведем качественный анализ системы ЧАП (рис.1) Рис.1. Структурная схема нелинейной ...

Скачать
62407
3
0

... того, можно создать новые документы, в которых будет проведён расчёт для других параметров модели. 5.4.Результаты работы программы В ПРИЛОЖЕНИИ 4 приведены графики для различных параметров модели отражателя – модулятора. По эти графикам видно, что для рассчитанного в главе 4 случая расход результатов составляет около 20-30%, что, вообще говоря, является хорошим результатом, поскольку вывод ...

Скачать
177379
0
29

... геномах растений, вызываемые с помощью ФПУ-трансформированной человеческой речи, которая резонансно взаимодействует с хромосомной ДНК in vivo [25,29]. Этот результат, осмысленный нами с позиций семиотико-волновой составляющей генетического кода, имеет существенное методологическое значение и для анализа таких суперзнаковых объектов, как тексты ДНК, и для генома в целом. Открываются принципиально ...

0 комментариев


Наверх