Содержание

 

 

Введение……………………………………………………………………………………….. 4

1.    Выполнение и содержание расчетов…………………………………………………….. 6

1.1. Выбор главных размеров…………………………………………………………….. 6

1.2. Определение параметров статора…………………………………………………… 7

1.3. Расчет размеров зубцовой зоны статора и воздушного зазора……………………. 9

1.4. Расчет ротора…………………………………………………………………………. 10

1.5. Расчет магнитной цепи………………………………………………………………. 12

1.6. Параметры рабочего режима………………………………………………………… 14

1.7. Расчет потерь…………………………………………………………………………. 17

1.8. Расчет рабочих характеристик………………………………………………………. 19

1.9. Расчет пусковых характеристик…………………………………………………….. 22

1.9.1. С учетом влияния эффекта вытеснения тока………………………………… 22

1.9.2. С учетом влияния эффекта вытеснения тока и насыщения от полей

рассеяния……………………………………………………………………….. 24

1.10. Тепловой расчет…………………………………………………………………….. 29

1.11. Вывод………………………………………………………………………………… 31

2.    Специальная часть………………………………………………………………………… 32

2.1. Проводниковые материалы, применяемые в асинхронных двигателях………….. 32

2.2. Обмоточные провода, применяемые в асинхронных двигателях…………………. 34

3.    Список используемой литературы………………………………………………………. 36

Введение.

Электротехническая промышленность – ведущая отрасль народного хозяйства. Продукция электротехнической промышленности используется почти во всех промышленных установках, поэтому качество электротехнических изделий во многом определяет технический уровень продукции других отраслей.

Проектирование электрических машин – это искусство, соединяющее знание процессов электромеханического преобразования энергии с опытом, накопленным поколениями инженеров-электромехаников, умением применять вычислительную технику и талантом инженера, создающего новую или улучшающего уже выпускаемую машину.

При создании электрической машины рассчитываются размеры статора и ротора, выбираются типы обмоток, обмоточные провода, изоляция, материалы активных и конструктивных частей машины.

При проектирование необходимо учитывать соответствие технико-экономических показателей машин современному мировому уровню при соблюдении требований государственных и отраслевых стандартов. Приходится также учитывать назначение и условия эксплуатации, стоимость активных и конструктивных материалов, КПД, технологию производства, надежность в работе и патентную чистоту. Расчет и конструирование электрических машин неотделимы от технологии их изготовления. Поэтому при проектировании необходимо учитывать возможности электротехнических заводов, стремиться к максимальному снижению трудоемкости изготовления электрических машин.

Проектирование электрической машины сводится к многократному расчету зависимостей между основными показателями, заданных в виде системы формул, эмпирических коэффициентов, графических зависимостей, которые можно рассматривать как уравнения проектирования.

Данный курсовой проект содержит проектирование трехфазного асинхронного двигателя с короткозамкнутым ротором. Понятие асинхронной машины связано с тем, что ротор ее имеет частоту вращения, отличающуюся от частоты вращения магнитного поля статора.

Асинхронные двигатели являются основными преобразователями электрической энергии в механическую и составляют основу электропривода большинства механизмов, используемых во всех отраслях народного хозяйства.

В основу конструкции асинхронного двигателя положено создание системы трехфазного переменного тока. Переменный ток, подаваемый в трехфазную обмотку статора двигателя, формирует в нем вращающееся магнитное поле.

 Базовой моделью для проектирования является двигатель серии 4А. В серии 4А за счет применения новых электротехнических материалов и рациональной конструкции мощность двигателей при данных высотах оси вращения повышена на две-три ступени по сравнению с мощностью двигателей серии А2, что дало большую экономию дефицитных материалов. Существенно улучшились виброшумовые характеристики. При проектировании серии большое внимание было уделено повышению надежности машин. Впервые в мировой практике для асинхронных двигателей общего назначения были стандартизированы показатели надежности. Особое внимание при проектировании уделялось экономичности двигателей.

Двигатели серии 4А спроектированы оптимальными для нужд народного хозяйства. Критерием оптимизации была принята суммарная стоимость двигателя в производстве и эксплуатации, которая должна быть минимальной.

Серия охватывает диапазон мощностей от 0,6 до 400 кВт и построена на 17 стандартных высотах оси вращения от 50 до 355 мм. Серия включает основное исполнение двигателей, ряд модификаций и специализированное исполнение. Двигатели основного исполнения предназначены для нормальных условий работы и являются двигателями общего назначения. Это трехфазные асинхронные двигатели с короткозамкнутым ротором, рассчитанные на частоту сети 50 Гц. Они имеют исполнение степени защиты IP44 во всем диапазоне высот оси вращения и IP23 в диапазоне высот осей вращения 160 – 355 мм.

К электрическим модификациям двигателей серии 4А относятся двигатели с повышенным номинальным скольжением, с повышенным пусковым моментом, многоскоростные, с частотой питания 60 Гц и т.п., к конструктивным модификациям – двигатели с фазным ротором, со встроенным электромагнитным тормозом, малошумные, со встроенной температурной защитой и т.п.

Для производства двигателей серии 4А разработана и осуществлена прогрессивная технология. Механическая обработка станин, валов и роторов двигателей производится на автоматических линиях, штамповка листов магнитопровода – на прессах-автоматах. Автоматизирована сборка сердечников статора, механизирована сборка и заливка роторов. Укладка статорной обмотки производится на автоматических станках, а пропитка и сушка обмоток на автоматических струйных или вакуум-нагнетательных установках. Испытание узлов двигателей и двигателей в сборе производится на специальных стендах и автоматических испытательных станциях.

Все это обеспечило высокую производительность труда при высоком качестве изготовления.

По своим энергетическим, пусковым, механическим, виброшумовым, эксплуатационным характеристикам серия 4А удовлетворяет всем требованиям, предъявляемым к асинхронным двигателям, и соответствует современному уровню электромашиностроения.

Выбор главных размеров.

1.    Высота оси вращения (предварительно) по рис. 8.17, а h = 260 мм. Принимаем ближайшее стандартное значение h = 250 мм; Dа = 0.45 м (см. табл. 8.6).

2.    Внутренний диаметр статора D = kD·Da = 0.68 · 0.45 = 0.306 м, kD = 0,68 по табл. 8.7.

3.    Полюсное деление τ = πD/(2p) = π0.306/4 = 0.24 м.

4.    Расчетная мощность по (8.4)


(kЕ – по рис. 8.20; η и cosφ – см. задание на проектирование).

5.    Электромагнитные нагрузки (предварительно по рис. 8.22,б)

А = 38·10³ А/м; Вδ = 0.78 Тл.

6.    Обмоточный коэффициент (предварительно для двухслойной обмотки) kоб1 = 0.92.

7.    Расчетная длина магнитопровода по (8.6)


[по (8.5) Ω = 2πf/p = 2π50/2 = 157 рад/с; kв = 1,11 – коэффициент формы поля].

8.    Отношение λ = lδ/τ = 0.23/0.24 = 0.96. Значение λ = 0,96 находится в допустимых пределах (см. рис. 8.25, а).

Определение Z1, w1 и площади поперечного сечения провода обмотки статора.

9.    Предельные значения tz1 (по рис. 8.26): tz1max = 0.018 м; tz1min = 0.015 м.

10.  Число пазов статора по (8.16)


Принимаем Z1 = 60, тогда q1 = Z1/(2pm); 60/(4*3) = 5. Обмотка двухслойная.

11.  Зубцовое деление статора (окончательно)

12. 
Число эффективных проводников в пазу (предварительно, при условии а = 1 по (8.17))


13.  Принимаем а = 2, тогда по (8.19) Uп = аUп = 13 проводников.

14.  Окончательные значения:

число витков в фазе по (8.20)


линейная нагрузка по (8.21)


магнитный поток по (8.22)


(для обмотки с q=5 по табл. 3.16 kоб1=kр1=0,957; для Dа=0,45 м по рис. 8.20 kЕ = 0,98);

индукция в воздушном зазоре по (8.23)


Значения А и Вδ находятся в допустимых пределах (см. рис. 8.22, б).

15.  Плотность тока в обмотке статора (предварительно) по (8.25)


(AJ=188*10³ по рис. 8.27, б).

16.  Площадь поперечного сечения эффективного проводника (предварительно) по (8.24)

17. 


 Сечение эффективного проводника (окончательно): принимаем nэл=7, тогда qэл=qэф/nэл=9,4/7=1,344 мм². Принимаем обмоточный провод марки ПЭТМ (см. приложение 3), dэл=1,4 мм, qэл=1,539 мм², qэ.ср=nэлqэл=10,7 мм².
Информация о работе «Асинхронный двигатель»
Раздел: Физика
Количество знаков с пробелами: 39328
Количество таблиц: 6
Количество изображений: 31

Похожие работы

Скачать
116051
16
7

... из строя эл. двигателя. вспомо- гатель-ная. Защитные крышки, кожухи, эмали, лаки. Конструк- ционные материалы, краски, лаки, эмали. Таблица 7.1. СФА АД Система асинхронного двигателя для структурно-функционального анализа представлена на рис. 7.2.   Рис. 7.2. Схема для СФА Матрица механической связи основных элементов структуры асинхронного электродвигателя приведена ниже в ...

Скачать
102925
0
29

... b = a(t2) + g(t2) = w0× t + g 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ 2.1 Наименование и область применения Разрабатываемое устройство называется: автоматическая система управления асинхронным двигателем. Область применения разрабатываемого устройства не ограничивается горнодобывающей промышленностью и может использоваться на любых предприятиях для управления машинами с асинхронным приводом. 2.2 Основание для ...

Скачать
140823
20
31

... . Целью дипломного проекта является разработка и исследование автоматической системы регулирования (АСР) асинхронного высоковольтного электропривода на базе автономного инвертора тока с трехфазным однообмоточным двигателем с детальной разработкой программы высокого уровня при различных законах управления. В ходе конкретизации из поставленной цели выделены следующие задачи. Провести анализ ...

Скачать
19960
0
5

... , потребляемой из сети, также возрастает с ростом мощности и частоты вращения двигателей; при мощности более 1 кВт он составляет 0,7—0,9; в микродвигателях 0,3—0,7. Общие сведения о режимах работы асинхронного двигателя. В двигательном режиме разница частот вращения ротора и поля статора в большинстве случаев невелика и составляет лишь несколько процентов. Поэтому частоту вращения ротора ...

0 комментариев


Наверх