2. ПУТИ АКТИВАЦИИ АЛКЕНОВ

Наиболее характерной реакцией π-комплексов олефинов, относящихся к I типу, является реакция с нуклеофильными реагентами.

Нуклеофильный реагент часто атакует π-комплекс со стороны, противоположной металлу (транс-присоединение), образуя σ-металлоорганическое соединение:

В качестве нуклеофилов могут выступать анионные карбонилметаллаты, образуя σ-металлоорганические соединения с мостиковым этиленом:

(π-C5H5)(CO)3M(π-C2H4) + Re(CO)5- → (π-C5H5)(CO)3MCH2CH2Re(CO)5

M = Mo, W

Поляризация молекулы олефина в π-комплексе может приводить к смещению электронов в группах, соседних с С=С – связью, что проявляется, например, в образовании π-аллильных комплексов:

В π-комплексах II типа характер реакционной способности кратной связи меняется. π-Лиганд становится способным взаимодействовать с электрофильными реагентами, например в соответствии со схемой:

Более характерными для π-комплексов II типа являются реакции, связанные с общим разрыхлением всей молекулы из-за переноса электронов на олефин. К таким реакциям следует отнести реакции циклообразования, внедрения по связи металл-металл, окислительного присоединения или замещения по связи =С-Х (где X = H, Cl, F).

Например:

Или

(CO)4Co-Co(CO)4 + CF2=CF2 → (CO)4Co- CF2CF2-Co(CO)4

Иногда активация олефина в π-комплексах II типа настолько лабилизирует связи в π-лиганде, что становится возможным разрыв связей С-Н при двойной связи и в соседней с двойной связью метильной группе, приводящий к продуктам окислительного присоединения:

Os3(CO)12 + C2H4 → H2Os3(C=CH2)(CO)9 + 3CO


3. ПУТИ АКТИВАЦИИ АЛКИНОВ

В ацетиленовых комплексах I типа (Ag(I), Cu(I), Hg(II), Pt(II), Pd(II), Ru(III) и др.) повышение электрофильности тройной связи приводит к облегчению взаимодействия с нуклеофильной частицей из раствора (транс-присоединение) или нуклеофилом, координированным металлом (цис-внедрение):

Основные реакции π-комплексов I типа довольно удачно промоделированы на комплексах Pt(II):

Образующийся катионный π-комплекс способен превращаться по нескольким направлениям:


В π-комплексах II типа в первую очередь сильно разрыхляется тройная связь углерод-углерод и связь C-X при тройной связи. Так, активация связи С-Н в π-комплексах Ni(0), Pt(0), Os(0) или Rh(I) приводит к окислительному присоединению с образованием этинилгидридного комплекса металла:

Вторая характерная реакция для π-комплексов II типа – это реакция циклообразования, причем в состав получающегося металлоцикла входят уже две молекулы алкина:

Металлоциклопентадиены из алкинов получены в реакциях комплексов Pt(0), Pd(0), Co(I), Fe(0), Rh(I), Ir(I) и Ti(II).

Активация полярных молекул

Полярные молекулы НХ, где Х – ОН, OR, Hal, CN, NH2, NR2, NHR, SR и др. активируются по механизму, близкому к механизму активации апротонными кислотами. Образование донорно-акцепторной связи между донорным атомом полярной молекулы и комплексом переходного металла, имеющим вакантные орбитали, приводит к ослаблению связи Н – Х. Ослабление связи H-X при координации этих молекул подтверждается, как правило, данными ИК-спектров координированных молекул. При этом в образующемся комплексе происходит смещение σ-пары электронов донорных атомов O, N или S к иону металла, обладающему акцепторными свойствами. Молекула лиганда поляризуется, что приводит к ее ионизации и облегчает диссоциацию (в полярных растворителях):

Смещение электронов и ослабление связи Х-Н при координации подтверждается данными ИК-спектров координированных молекул. Например, координация RNH2 в комплексах с PtCl2 приводит к понижению νN-H (на 80-100 см-1).

В результате повышается способность связи Н-Х к гетеролитической диссоциации с передачей протона на другой субстрат или его окислительному присоединению к переходному металлу (в зависимости от степени окисления металла и состояния его внутренней координационной сферы).

HX + MLn —→ H--X→MLn-1 + L

Даже такие слабые кислоты, как молекула аммиака или аминов, легко депротонируются в водных или неводных средах в координационной сфере переходных металлов:

TiCl4 + 6NH3 → TiCl(NH2)3 + 3 NH4Cl

Или

Pt(NH3)X5- + H2O → Pt(NH3)X52- + H3O+

В результате в комплексе металла появляется фрагмент молекулы HX (например, NH2), реакционная способность которого, конечно, ниже, чем свободного иона NH2-, но концентрация которого на много порядков выше, чем в отсутствие комплексообразователя.

Константа диссоциации ацетонитрила HCN, например, составляет 10-10. Образование комплексов с металлами позволяет существенно повысить концентрацию группы M-CN.

Так, при взаимодействии HCN с полиядерными комплексами меди(I)

CumCln(n-m)- + HCN → ClnCum-1(CuCN) + HCl

концентрация CuCN в растворе может достигать 15% вес. Координированный анион CN может далее участвовать в различных реакциях:

Для катализа особенно важны две последние реакции. Последняя реакция приводит к образованию изосинильной кислоты, способной внедряться по связи M-X.


Рекомендуемая литература

 

1.         Г. Хенрици-Оливэ, С. Оливэ. Химия каталитического гидрирования СО. Москва, Мир, 1987 г.

2.         Ф. Басоло, Р. Джонсон. Химия координационных соединений. Москва, Мир, 1966.

3.         Под ред. Г. Цейсса. Химия металлоорганических соединений. Москва, Мир, 1964.

4.         Э. Фишер, Г. Вернер. π-Комплексы металлов. Москва, Мир, 1968.


Информация о работе «Активация алкенов и алкинов»
Раздел: Химия
Количество знаков с пробелами: 10108
Количество таблиц: 2
Количество изображений: 11

Похожие работы

Скачать
11903
5
5

... 1). В аналогичном комплексе иридия Ir(H)2(h2-H2)[P(C6H11)3]2 наблюдается быстрый обмен между координированным молекулярным водородом и гидридными лигандами. Однако в этих комплексах координирована молекула водорода и ее активация сводится лишь к удлинению связи H-H. В большинстве случаев взаимодействие водорода с комплексами переходных металлов приводит к разрыву связи в молекуле водорода. При ...

Скачать
202198
14
15

... реакции на альдегидную группу – окисляется оксидом серебра (1), присоединяет синильную кислоту (4): Химические свойства: 1.    2.    3.    4.    5.    6.    7.    8.    Спиртовое брожение. Эта реакция характерна для гексоз. Она осуществляется с помощью биологических катализаторов – ферментов. При сбраживании гексозы превращаются в этиловый спирт. Для пентоз брожение ...

Скачать
8688
1
1

... Бензамид Амид N-бензоил- L-тирозина Мочевина Н3О+ Химотрипсин Н3О+ Уреаза 2,4∙10-6 14,9 7,4∙10-6 5,0∙106 52 25 62 21 II. Классификация катализаторов по степени дискретности и коллективности действия Взаимодействие катализатора с реагентами в газовой и жидкой фазе носит в основном дискретный характер (взаимодействие с одним реакционным ...

Скачать
23465
0
0

... кислот. Приведите примеры кислот. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету ХИМИЯ Билет № 19 Как классифицируются кислоты в зависимости от состава. Ответ иллюстрируйте примерами. Сформулируйте закон действующих масс и напишите его математическое выражение для реакции аА + вВ + сС  Продукты. Охарактеризуйте ...

0 комментариев


Наверх