Вклад А.Н. Колмогорова в развитие теории вероятностей

14391
знак
0
таблиц
0
изображений

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. Теория вероятностей и вклад ученых в ее развитие

2. А.Н. Колмогоров

2.1 Ранние годы

2.2 Университет

2.3 Послевоенная работа

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

В настоящее время трудно представить исследование и прогнозирование экономических процессов без использования методов, опирающихся на теорию вероятностей. При принятии решений в области бизнеса, финансов, менеджмента основой корректности и, в конечном счете, успеха является правильный учет и анализ больших объемов статистической информации, а также грамотная оценка вероятностей происхождения тех или иных событий. Теоретической основой существующих специальных приемов и методов решения задач экономики являются теория вероятностей и математическая статистика.

Сочетание слов «теория вероятностей» для неискушенного человека производит несколько странное впечатление. В самом деле, слово «теория» связывается с наукой, а наука изучает закономерные явления; слово «вероятность» в обычном языке связывается с чем-то неопределенным, случайным, незакономерным. Поэтому люди, знающие о существовании теории вероятностей только понаслышке, говорят о ней часто иронически. Однако теория вероятностей – это большой, интенсивно развивающийся раздел математики, изучающий случайные явления.

В данной работе мы осветим колоссальный вклад выдающегося русского математика Андрея Николаевича Колмогорова в развитие теории вероятностей.


1. Теория вероятностей и вклад ученых в ее развитие

Теория вероятностей – раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Важный вклад в теорию вероятностей внёс Яков Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П.Л. Чебышёв, А.А. Марков и А.М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.


2. А.Н. Колмогоров

Андрей Николаевич Колмогоров (12 (25) апреля 1903, Тамбов – 20 октября 1987, Москва) – выдающийся советский математик, доктор физико-математических наук, профессор Московского Государственного Университета (1931), академик Академии Наук СССР (1939). Колмогоров – один из основоположников современной теории вероятностей, им получены фундаментальные результаты в топологии, математической логике, теории турбулентности, теории сложности алгоритмов и ряде других областей математики и её приложений.

  2.1 Ранние годы

Мать Колмогорова – Мария Яковлевна Колмогорова (1871–1903) умерла при родах. Отец – Николай Матвеевич Катаев, по образованию агроном (окончил Петровскую (Тимирязевскую) академию), погиб в 1919 году во время деникинского наступления. Мальчик был усыновлён и воспитывался сестрой матери, Верой Яковлевной Колмогоровой. Тётушки Андрея в своём доме организовали школу для детей разного возраста, которые жили поблизости, занимались с ними – десятком ребятишек – по рецептам новейшей педагогики. Для ребят издавался рукописный журнал «Весенние ласточки». В нём публиковались творческие работы учеников – рисунки, стихи, рассказы. В нём же появлялись и «научные работы» Андрея – придуманные им арифметические задачи. Здесь же мальчик опубликовал в пять лет свою первую научную работу по математике. Правда, это была всего-навсего известная алгебраическая закономерность, но ведь мальчик сам её подметил, без посторонней помощи!

В семь лет Колмогорова определили в частную гимназию. Она была организована кружком московской прогрессивной интеллигенции и всё время находилась под угрозой закрытия.

Андрей уже в те годы обнаруживает замечательные математические способности, но всё-таки ещё рано говорить, что дальнейший путь его уже определился. Были ещё увлечение историей, социологией. Одно время он мечтал стать лесничим. «В 1918–1920 годах жизнь в Москве была нелёгкой, – вспоминал Андрей Николаевич. В школах серьёзно занимались только самые настойчивые. В это время мне пришлось уехать на строительство железной дороги Казань-Екатеринбург. Одновременно с работой я продолжал заниматься самостоятельно, готовясь сдать экстерном за среднюю школу. По возвращении в Москву я испытал некоторое разочарование: удостоверение об окончании школы мне выдали, даже не потрудившись проэкзаменовать».

  2.2 Университет

Когда в 1920 г. Андрей Колмогоров стал думать о поступлении в институт, перед ним возник вечный вопрос: чему себя посвятить, какому делу? Влечёт его на математическое отделение университета, но есть и сомнение: здесь чистая наука, а техника – дело, пожалуй, более серьёзное. Вот, допустим, металлургический факультет Менделеевского института! Настоящее мужское дело, кроме того, перспективное. Андрей решает поступать и туда и сюда. Но вскоре ему становится ясно, что чистая наука тоже очень актуальна, и он делает выбор в её пользу.

В 1920 г. он поступил на математическое отделение Московского университета. «Задумав заниматься серьёзной наукой, я, конечно, стремился учиться у лучших математиков, – вспоминал позднее учёный. – Мне посчастливилось заниматься у П.С. Урысона, П.С. Александрова, В.В. Степанова и Н.Н. Лузина, которого, по-видимому, следует считать по преимуществу моим учителем в математике. Но они „находили“ меня лишь в том смысле, что оценивали приносимые мною работы. „Цель жизни“ подросток или юноша должен, мне кажется, найти себе сам. Старшие могут этому лишь помочь».

В первые же месяцы Андрей сдал экзамены за курс. А как студент второго курса он получает право на «стипендию»: «…я получил право на 16 килограммов хлеба и 1 килограмм масла в месяц, что, по представлениям того времени, обозначало уже полное материальное благополучие». Теперь есть и свободное время. Оно отдаётся попыткам решить уже поставленные математические задачи.

Лекции профессора Московского университета Николая Николаевича Лузина, по свидетельству современников, были выдающимся явлением. У Лузина никогда не было заранее предписанной формы изложения. И его лекции ни в коем случае не могли служить образцом для подражания. У него было редкое чувство аудитории. Он, как настоящий актёр, выступающий на театральной сцене и прекрасно чувствующий реакцию зрительного зала, имел постоянный контакт со студентами. Профессор умел приводить студентов в соприкосновение с собственной математической мыслью, открывая таинства своей научной лаборатории. Приглашал к совместной духовной деятельности, к сотворчеству. А какой это был праздник, когда Лузин приглашал учеников к себе домой на знаменитые «среды»! Беседы за чашкой чая о научных проблемах. Впрочем, почему обязательно о научных? Тем для разговора было предостаточно. Он умел зажечь молодёжь желанием научного подвига, привить веру в собственные силы, и через это чувство приходило другое – понимание необходимости полной отдачи любимому делу.

Колмогоров впервые обратил на себя внимание профессора на одной лекции. Лузин, как всегда, вёл занятия, постоянно обращаясь к слушателям с вопросами, заданиями. И когда он сказал: «Давайте строить доказательство теоремы, исходя из следующего предположения…» – в аудитории поднялась рука Андрея Колмогорова: «Профессор, оно ошибочно…». За вопросом «почему» последовал краткий ответ первокурсника. Довольный Лузин кивнул: «Что ж, приходите на кружок, доложите нам свои соображения более развёрнуто». «Хотя моё достижение было довольно детским, оно сделало меня известным в «Лузитании», – вспоминал Андрей Николаевич.

Но через год серьёзные результаты, полученные восемнадцатилетним второкурсником Андреем Колмогоровым, обратили на себя настоящее внимание «патриарха». С некоторой торжественностью Николай Николаевич предлагает Колмогорову приходить в определённый день и час недели, предназначенный для учеников его курса. Подобное приглашение, по понятиям «Лузитании», следовало расценивать как присвоение почётного звания ученика. Как признание способностей.

Со временем отношение Колмогорова к Лузину поменялось. Под влиянием Павла Сергеевича Александрова, также бывшего ученика Лузина, он принял участие в политическом преследовании их общего учителя, так называемом деле Лузина, которое едва не закончилось репрессиями против Лузина. С самим Александровым Колмогоров был связан дружескими узами до конца жизни.

Первые публикации Колмогорова были посвящены проблемам дескриптивной и метрической теории функций. Наиболее ранняя из них появилась в 1923 году. Обсуждавшиеся в середине двадцатых годов повсюду, в том числе в Москве, вопросы оснований математического анализа и тесно с ними связанные исследования по математической логике привлекли внимание Колмогорова почти в самом начале его творчества. Он принял участие в дискуссиях между двумя основными противостоявшими тогда методологическими школами – формально-аксиоматической (Д. Гильберт) и интуиционистской (Л.Э. Брауэр и Г. Вейль). При этом он получил совершенно неожиданный первоклассный результат, доказав в 1925 г., что все известные предложения классической формальной логики при определённой интерпретации переходят в предложения интуиционистской логики. Глубокий интерес к философии математики Колмогоров сохранил навсегда.

Особое значение для приложения математических методов к естествознанию и практическим наукам имел закон больших чисел. Разыскать необходимые и достаточные условия, при которых он имеет место, – вот в чём заключался искомый результат. Крупнейшие математики многих стран на протяжении десятилетий безуспешно старались его получить. В 1926 году эти условия были получены аспирантом Колмогоровым.

Многие годы тесного и плодотворного сотрудничества связывали его с А.Я. Хинчиным, который в то время начал разработку вопросов теории вероятностей. Она и стала областью совместной деятельности учёных. Наука «о случае» ещё со времён Чебышева являлась как бы русской национальной наукой. Её успехи преумножили многие советские математики, но современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем в 1929 и окончательно в 1933. Своей работой - Основные понятия теории вероятностей, опубликованной в 1933 году на немецком и русском языках, А.Н. Колмогоров по существу заложил фундамент современной теории вероятности, основанной на теории меры.

Андрей Николаевич до конца своих дней считал теорию вероятностей главной своей специальностью, хотя областей математики, в которых он работал, можно насчитать добрых два десятка. Но тогда только начиналась дорога Колмогорова и его друзей в науке. Они много работали, но не теряли чувства юмора. В шутку называли уравнения с частными производными «уравнениями с несчастными производными», такой специальный термин, как конечные разности, переиначивался в «разные конечности», а теория вероятностей – в «теорию неприятностей».

Норберт Винер, «отец» кибернетики, свидетельствовал: «…Хинчин и Колмогоров, два наиболее видных русских специалиста по теории вероятностей, долгое время работали в той же области, что и я. Более двадцати лет мы наступали друг другу на пятки: то они доказывали теорему, которую я вот-вот готовился доказать, то мне удавалось прийти к финишу чуть-чуть раньше их».

И ещё одно признание Винера, которое он однажды сделал журналистам: «Вот уже в течение тридцати лет, когда я читаю труды академика Колмогорова, я чувствую, что это и мои мысли. Это всякий раз то, что я и сам хотел сказать».

  2.3 Послевоенная работа

Круг жизненных интересов Андрея Николаевича не замыкался чистой математикой, объединению отдельных разделов которой в одно целое он посвятил свою жизнь. Его увлекали и философские проблемы (например, он сформулировал новый гносеологический принцип – Гносеологический принцип А.Н. Колмогорова), и история науки, и живопись, и литература, и музыка.

Академик Колмогоров – почётный член многих иностранных академий и научных обществ. В марте 1963 года учёный был удостоен международной премии Бальцана (этой премией он был награждён вместе с композитором Хиндемитом, биологом Фришем, историком Моррисоном и главой Римской католической церкви Папой Иоанном XXIII). В том же году Андрею Николаевичу было присвоено звание Героя Социалистического Труда. В 1965 году ему присуждена Ленинская премия (совместно с В.И. Арнольдом). В последние годы Колмогоров заведовал кафедрой математической логики.

«Я принадлежу, – говорил учёный, – к тем крайне отчаянным кибернетикам, которые не видят никаких принципиальных ограничений в кибернетическом подходе к проблеме жизни и полагают, что можно анализировать жизнь во всей её полноте, в том числе и человеческое сознание, методами кибернетики. Продвижение в понимании механизма высшей нервной деятельности, включая и высшие проявления человеческого творчества, по-моему, ничего не убавляет в ценности и красоте творческих достижений человека».

По меткому выражению Стефана Банаха: «Математик – это тот, кто умеет находить аналогии между утверждениями. Лучший математик – кто устанавливает аналогии доказательств. Более сильный может заметить аналогии теорий. Но есть и такие, кто между аналогиями видит аналогии». К этим редким представителям последних относится и Андрей Николаевич Колмогоров – один из крупнейших математиков двадцатого века.

Колмогоров скончался 20 октября 1987 г. в Москве. Похоронен на Новодевичьем кладбище.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1.   Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1977.

2.   Ежова Л.Н. Теория вероятностей и математическая статистика: Основы математики для экономистов. Вып. 9: Учеб. Пособие. – Иркутск: Изд-во ИГЭА, 2000.

3.   Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1991.


Информация о работе «Вклад А.Н. Колмогорова в развитие теории вероятностей»
Раздел: Математика
Количество знаков с пробелами: 14391
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
66594
1
0

... случайная величина приобрела статус полноценного математического понятия, ей необходимо дать строго формализованное определение. Это было сделано в конце 20-х годов А.Н. Колмогоровым в небольшой статье, посвященной аксиоматике теории вероятностей, а затем в подробностях изложено в его знаменитой книге «Основные понятия теории вероятностей». Подход Колмогорова стал теперь общепринятым, поскольку он ...

Скачать
98993
10
0

... вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса). Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс. 2. Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса   2.1 Основные понятия о факультативном курсе Возможность 1-2 часа в неделю дополнительно работать со ...

Скачать
30322
0
0

... я вот-вот готовился доказать, то мне удавалось прийти к финишу чуть-чуть раньше их». И ещё одно признание Винера, которое он однажды сделал журналистам: «Вот уже в течение тридцати лет, когда я читаю труды академика Колмогорова, я чувствую, что это и мои мысли. Это всякий раз то, что я и сам хотел сказать». 1.3 Профессор В 1930 г. Колмогоров стал профессором МГУ, с 1933 по 1939 год был ...

Скачать
41248
0
0

... Поэтому целесообразно разработать предназначенный для поддержки проведения экспертных исследований АРМ "МАТЭК" ("Математика в экспертизе") на базе РС фирмы "Apple" с использованием современных достижений в области теории и практики экспертных оценок, в области прикладной математической статистики, прежде всего статистики объектов нечисловой природы. Список литературы 1. Орлов А.И. Допустимые ...

0 комментариев


Наверх