2.1.2. Двухфакторный дисперсионный анализ при перекрестной

классификации факторов

 

Часто необходимо качественно оценить значимость или незначимость влияния на целевую функцию u двух одновременно действующих факторов x1 и x2 . Такими факторами могут быть, например, форма собственности предприятия x1 ивид экономической деятельности x2.

Модель двухфакторного дисперсионного анализа имеет вид [1-4]:

где - общее среднее, -отклонение от общего среднего для фактора x1, - отклонение от общего среднего для фактора x2, - отклонение от общего среднего для взаимодействия двух факторов, - случайная составляющая.

В этом случае общую сумму квадратов отклонений Q0 можно разбить на четыре суммы:

1)   Qx1-по фактору x1,

2)   Qx2-по фактору x2,

3)   Qe-остаточную сумму квадратов, зависящую от ошибки e,

4)   Q x1x2-зависящую от взаимодействия (произведения) x1x2 двух факторов.

В этом случае по выборочным значениям вычисляются:

1) среднее  для каждого уровня фактораx1:

;

2) среднее  для каждого уровня фактора x2:

;

3) общее среднее  по всем N опытам, т.е. по всем m параллельным опытам на всех сочетаниях уровней факторов x1 и x2 ():

;

4) среднее  по m параллельным опытам для каждого сочетания уровней факторов x1 и x2:

.

В табл.2 показаны данные полного факторного эксперимента с одинаковым числом наблюдений в ячейках.

Таблица 3. - Данные эксперимента и расчёты средних при двухфакторном дисперсионном анализе

j = 1 2

i =

k

1 1

2

m

.

.

.

1
2
m

1
2
m

В табл.2 вычисляется по выделенной части столбца, содержащей m параллельных опытов.

Общая сумма квадратов отклонений Q0 рассчитывается по формуле:

Эту сумму можно разложить на 4 составляющие:

1) сумму, характеризующую влияние фактора x1:

;

2) сумму, характеризующую влияние фактора x2:

;

3) сумму, характеризующую результат влияния взаимодействия x1x2:

4) сумму, характеризующую влияние ошибки e:

Указанные пять сумм, поделенные на соответствующее число степеней свободы, дают пять различных оценок дисперсии, если влияние факторов x1 и x2 незначимо. Для проведения дисперсионного анализа вычисляются следующие дисперсии:

1) оценка дисперсии относительно общего среднего:

,

где  -общее число наблюдений, а число степеней свободы

;

2) оценка дисперсии «между строками», определяемыми уровнями x1j:

,

где  - число степеней свободы.

3) оценка дисперсии «между столбцами», соответствующими уровням фактора x2:

,

где  - число степеней свободы;

4) оценка дисперсии «между сериями» по m параллельным опытам каждая

с числом степеней свободы ;

5) оценка дисперсии «внутри серий» по m параллельным опытам, вычисляемая как средняя оценка по всем u1u2 сериям:

с числом степеней свободы .

Числа степеней свободы должны удовлетворять соотношению

Статистическое оценивание значимости влияния факторов x1 , x2 и взаимодействия x1x2 выполняются по F-критерию Фишера, для чего формируются следующие F-отношения:

, , .

Фактор x1 или x2 , или взаимодействие x1x2 признаются незначимым, если соответствующее F-отношение оказывается меньше критического, выбранного из таблиц для принятого уровня значимости  и числа степеней свободы сравниваемых дисперсий.

Для того, чтобы сделать вывод о том, влияют ли на исследуемые показатели качественные факторы, выдвигают следующие гипотезы:

H0:  , т.е средние значения по всем столбцам равны фактор столбца не оказывает влияния на исследуемый показатель.

H1: , , т.е средние значения по всем столбцам не равны фактор столбца оказывает существенное влияние на исследуемый показатель.

H0:  , т.е средние значения по всем строкам равны фактор строки не оказывает влияния на исследуемый показатель.

H1: , , т.е средние значения по всем строкам не равны фактор строки оказывает существенное влияние на исследуемый показатель.

H0:  , т.е отклонение взаимодействия факторов равно нулю и взаимодействие не значимо..

H1: , фактор взаимодействия значим..

Если , то принимается нулевая гипотеза при соответствующем уровне значимости о том, что исследуемый фактор не оказывает существенного влияния на количественные данные.

Если , то нулевая гипотеза отвергается и принимается альтернативная при соответствующем уровне значимости. Исходя из этого, можно сделать вывод о том, что исследуемый фактор оказывает существенное влияние на количественные данные.

Результаты двухфакторного дисперсионного анализа представляются в виде табл.3.

Таблица 3. - Двухфакторный дисперсионный анализ при равном числе наблюдений в ячейках

Вид изменчивости Сумма квадратов отклонений Число степеней свободы Оценка дисперсии F – отношение

От фактора

x1

От фактора

x2

От взаимо-действия

x1x2

Остаточная

(от e)

Общая

m – число данных в строке (число повторов в ячейке), - число столбцов, - число строк.



Информация о работе «Дисперсионный анализ при помощи системы MINITAB для WINDOWS»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 31285
Количество таблиц: 14
Количество изображений: 4

Похожие работы

Скачать
28281
4
21

... MINITAB; -   ознакомиться с информацией о Вашей версии MINITAB. После того как Вы завершить работу в статистическом пакете MINITAB необходимо для закрытия программы выполнить следующие команды: File > Exit.   2.4. Расчет основных статистик в пакете Minitab. В ходе выполнения лабораторной работы студент должен получить практические навыки и умения по следующим пунктам: -   открывать и ...

Скачать
74770
0
0

... реакции или вмешательства оператора. Точки диалога по своей природе подразделяются на информационные (для ввода данных) и управляющие (для выбора дальнейшего хода обработки). Принятый в автоматизированной системе маркетинга одежды способ построения человеко-машинного диалога обеспечивает максимальную наглядность, простоту и удобство работы в режиме эксплуатации. 3. Определение емкости, оценка ...

0 комментариев


Наверх