2.1 Виды распределений

 

2.1.1 Равномерное распределение

Функция плотности вероятности равномерного распределения задает одинаковую вероятность для всех значений, лежащих между минимальным и максимальным значениями переменной. Другими словами, вероятность того, что значение попадает в указанный интервал. пропорциональна длине этого интервала. Применение равномерного распределения часто вызвано полным отсутствием информации о случайной величине, кроме ее предельных значений. Равномерное распределение называют также прямоугольным.

f (t) =при а ≤ t ≤ Ь.

Среднее значение распределения равно μ = , дисперсия равна σ2=.

Равномерно распределенная случайная величина X на отрезке [а, b] выражается через равномерно распределенную на отрезке [0, 1] случайную величину R формулой

X = а + (b - а) *R

Рис.1 Графики функции распределения и плотности распределения:

 

2.1.2 Треугольное распределение

Треугольное распределение является более информативным, чем равномерное. Для этого распределения определяются три величины - минимум, максимум и мода. График функции плотности состоит из двух отрезков прямых, одна из которых возрастает при изменении X от минимального значения до моды, а другая убывает при изменении X от значения моды до максимума. Значение математического ожидания треугольного распределения равно одной трети суммы минимума, моды и максимума. Треугольное распределение используется тогда, когда известно наиболее вероятное значение на некотором интервале и предполагается кусочно-линейный характер функции плотности. Функция плотности вероятности треугольного распределения имеет вид:

, m≤x≤b

 

, a≤x≤m

 

μ=, σ2=.

Подпись: если

Треугольно распределенная случайная X связана со случайной величиной R, распределенной равномерно на [0,1], соотношением:

, если .

 

f(x)=

 

 

Рис.2 График плотности треугольного распределения

 

2.1.3 Экспоненциальное (показательное) распределение

Если вероятность того, что один и только один результат наступит на интервале Δt, пропорциональна Δt и если наступление результата не зависит от наступления других результатов, величины интервалов между результатами распределены экспоненциально. Другими словами, работа, продолжительность которой экспоненциально распределена имеет одинаковую вероятность завершения в течение любого последующего периода времени Δt. Таким образом, работа, выполняемая за t единиц времени, имеет ту же вероятность окончания в последующий период Δt, что и только что начатая работа. Подобное отсутствие временной обусловленности называется марковским свойством или свойством отсутствия последействия. Существует прямая связь между предположением об экспоненциальности распределения продолжительности работы и марковским свойством. Экспоненциальное распределение предполагает значительную вариабельность переменной. Если математическое ожидание продолжительности работы равно 1/α, то дисперсия равна 1/α2. По сравнению с большинством остальных распределений экспоненциальное обладает большей дисперсией.

Функция распределения:

F(x)=

 
 1– e-αt при t≥0,

 


Информация о работе «Имитационная модель СТО с использованием программы С++»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 57802
Количество таблиц: 9
Количество изображений: 13

Похожие работы

Скачать
141641
20
15

... на лазерные компакт-диски. Система моделирования Орлан ориентирована на достаточно широкий круг пользователей. В первую очередь, естественно, это администраторы вычислительных сетей предприятий, стоящие перед задачей проектирования или исследования сети. Обязательное условие, накладываемое системой – проектируемая сеть должны основываться на стандарте Ethernet. Но, так как абсолютное ...

Скачать
98051
44
0

... 2-3 Поиск литературы 7 1 7 2-4 Разработка модели разветвленной СМО 6 1 6 3 Поиск литературы завершен 3-6 Изучение литературы по теории массового обслуживания 10 1 10 4 Модель разработана 4-5 Разработка алгоритма программы 10 1 10 5 Алгоритм программы разработан 5-7 Выбор среды программиро-вания и создание программы 30 1 ...

Скачать
84715
1
5

... характером квазипараллельного процесса является коренной причиной их неполного соответствия. Рисунок 1.2 — Динамика взаимодействия элементов СС. 2 СРЕДСТВА РЕАЛИЗАЦИИ ИМИТАЦИОННОЙ МОДЕЛИ 2.1 Табличный процессор Excel Имитационная модель автоматизированного участка обработки деталей реализована при помощи табличного процессора MS Excel и встроенной среды программирования Visual Basic for ...

Скачать
46164
1
11

... очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,'. именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые ...

0 комментариев


Наверх