1. Таблица значений F-критерия Фишера для уровня значимости α = 0.05

k2\k1

1 2 3 4 5 6 8 12 24
1 161,45 199,50 215,72 224,57 230,17 233,97 238,89 243,91 249,04 254,32
2 18,51 19,00 19,16 19,25 19,30 19,33 19,37 19,41 19,45 19,50
3 10,13 9,55 9,28 9,12 9,01 8,94 8,84 8,74 8,64 8,53
4 7,71 6,94 6,59 6,39 6,26 6,16 6,04 5,91 5,77 5,63
5 6,61 5,79 5,41 5, 19 5,05 4,95 4,82 4,68 4,53 4,36
6 5,99 5,14 4,76 4,53 4,39 4,28 4,15 4,00 3,84 3,67
7 5,59 4,74 4,35 4,12 3,97 3,87 3,73 3,57 3,41 3,23
8 5,32 4,46 4,07 3,84 3,69 3,58 3,44 3,28 3,12 2,93
9 5,12 4,26 3,86 3,63 3,48 3,37 3,23 3,07 2,90 2,71
10 4,96 4,10 3,71 3,48 3,33 3,22 3,07 2,91 2,74 2,54
11 4,84 3,98 3,59 3,36 3, 20

3,09П

2,95 2,79 2,61 2,40

Когда m=1, выбираем 1 столбец.

k2=n-m=7-1=6 - т.е.6-я строка - берем табличное значение Фишера

Fтабл=5.99, у ср. = итого: 7

Влияние х на у - умеренное и отрицательное

ŷ - модельное значение.

F расч. = 28,648: 1 = 0,92
200,50: 5

А = 1/7 * 398,15 * 100% = 8,1% < 10% -

приемлемое значение


Модель достаточно точная.

F расч. = 1/0,92 =1,6

F расч. = 1,6 < F табл. = 5,99

Должно быть Fрасч. > Fтабл

Нарушается данная модель, поэтому данное уравнение статистически не значимо.

Так как расчетное значение меньше табличного - незначимая модель.

Ā ср=

1 Σ (y - ŷ) *100%
N y

Ошибка аппроксимации.

A= 1/7*0,563494* 100% = 8,04991% 8,0%

Считаем, что модель точная, если средняя ошибка аппроксимации менее 10%.

 

Параметрическая идентификация парной нелинейной регрессии

Модель у = а * хb - степенная функция

Чтобы применить известную формулу, необходимо логарифмировать нелинейную модель.

log у = log a + b log x

Y=C+b*X -линейная модель.

b =

yx-Y*X

x²- (x) ²

C=Y-b*X

b=0.289

С = 1,7605 - ( - 0,298) * 1,7370 = 2,278

Возврат к исходной модели

Ŷ=10с*xb=102.278*x-0.298

№п/п У X Y X Y*X

X2

У I (y-ŷ) /yI
1 68,80 45,10 1,8376 1,6542 3,039758 2,736378 60,9614643 0,113932
2 61, 20 59,00 1,7868 1,7709 3,164244 3,136087 56,2711901 0,080536
3 59,90 57, 20 1,7774 1,7574 3,123603 3,088455 56,7931534 0,051867
4 56,70 61,80 1,7536 1,7910 3,140698 3, 207681 55,4990353 0,021181
5 55,00 58,80 1,7404 1,7694 3,079464 3,130776 56,3281590 0,024148
6 54,30 47, 20 1,7348 1,6739 2,903882 2,801941 60,1402577 0,107555
7 49,30 55, 20 1,6928 1,7419 2,948688 3,034216 57,3987130 0,164274
Итого 405, 20 384,30 12,3234 12,1587 21,40034 21,13553 403,391973 0,563493
Средняя 57,88571 54,90 1,760486 1,736957 3,057191 3,019362 57,62742 0,080499

Входим в EXCEL через "Пуск"-программы. Заносим данные в таблицу. В "Сервис" - "Анализ данных" - "Регрессия" - ОК

Если в меню "Сервис" отсутствует строка "Анализ данных", то ее необходимо установить через "Сервис" - "Настройки" - "Пакет анализа данных"

 

Прогнозирование спроса на продукцию предприятия. Использование в MS Excel функции "Тенденция"

A - спрос на товар. B - время, дни


№ п/п A

B

1 11 1
2 14 2
3 13 3
4 15 4
5 17 5
6 17,9

6

7 18,4 7

1/3

1

Шаг 1. Подготовка исходных данных

Шаг 2. Продлеваем временную ось, ставим на 6,7 вперед; имеем право прогнозировать на 1/3 от данных.

Шаг 3. Выделим диапазон A6: A7 под будущий прогноз.

Шаг 4. Вставка функция

Шаг1

Категория

Полный алфавитный перечень Тенденция

Шаг2

Тенденция

Известные значения x (курсор В1: В5)

Выделяем с 1 по 5

Новый x В6: В7
Известный y А1: А5
Const 1
Ок

Шаг 5. ставим курсор в строку формул за последнюю скобку

= ТЕНД ()

<Ctrl+Shift+Enter>

Вставка диаграмма нестандартны гладкие графики

диапазон у готово.


Если каждое последующее значение нашего временной оси будет отличаться не на несколько процентов, а в несколько раз, тогда нужно использовать не функцию "Тенденция", а функцию "Рост".

 


Список литературы

1.     Елисеева "Эконометрика"

2.     Елисеева "Практикум по эконометрике"

3.     Карлсберг "Excel для цели анализа"


Приложение
ВЫВОД ИТОГОВ

Регистрационная статистика

Множественный R 0,947541801
R-квадрат 0,897835464
Нормированный R-квадрат 0,829725774
Стандартная ошибка 0,226013867
Наблюдения 6

 

 

 

 

 

 

 

 

Дисперсионный анализ

df

SS

MS

F

Значимость F

 

 

 

Регрессия 2 1,346753196 0,673376598 13,18219855 0,032655042
Остаток 3 0,153246804 0,051082268
Итого 5 1,5

Коэффициенты

Стандартная ошибка

t-статистика

Р-значение

Нижние 95%

Верхние 95%

Нижние 95%

Верхние 95%

Y-пересечение 4,736816539 0,651468195 7,27098664 0,005368842 2,66355399 6,810079088 2,66355399 6,810079088
Переменная X1 0,333424008 0,220082134 1,51499807 0,227014505 -0,366975566 1,033823582 -0,366975566 1,033823582
Переменная X2 0,077993238 0,038841561 2,007984153 0,138252856 -0,045617943 0, 201604419 -0,045617943 0, 201604419

Информация о работе «Классификация эконометрических моделей и методов»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 9379
Количество таблиц: 18
Количество изображений: 2

Похожие работы

Скачать
94674
0
0

... ПО “Уралмаш”, “АвтоВАЗ”, МИИТ, Казахского политехнического института, Донецкого государственного университета и многих других. Затем Институт в качестве Лаборатории эконометрических исследований разрабатывал эконометрические методы анализа нечисловых данных, а также процедуры расчета и прогнозирования индекса инфляции и валового внутреннего продукта. Институт высоких статистических технологий и ...

Скачать
150656
26
5

... несколько уравнений, а в каждом уравнении - несколько переменных. Задача оценивания параметров такой разветвленной модели решается с помощью сложных и причудливых методов. Однако все они имеют одну и ту же теоретическую основу. Поэтому для получения начального представления о содержании эконометрических методов мы ограничимся в последующих параграфах рассмотрением простой линейной регрессии. ...

Скачать
79304
3
0

... что только что проведенное сравнение ранжировок (1) и (2) осуществлено не вполне строго. Ясно, что в эконометрическом инструментарии специалиста по проведению экспертных исследований должен быть алгоритм согласования ранжировок, полученных различными методами. Метод согласования кластеризованных ранжировок Рассматриваемая здесь проблема состоит в выделении общего нестрогого порядка из набора ...

Скачать
155452
15
0

... осуществляется подстановкой в уравнение регрессии значений независимых переменных, которые определяют условия, для которых делается прогноз. 2.2 Методы планирования и прогнозирования доходов бюджетов органов местного самоуправления Методы прогнозирования и планирования выражаются в способах и приемах разработки прогнозных и плановых документов и показателей применительно к различным их видам ...

0 комментариев


Наверх