Транзистор у режимі ключа

Електроніка та мікропроцесорна техніка
Рух електронів в електричному і магнітному полях Температурні і частотні характеристики переходу. Еквівалентна схема р-п-переходу Варикапи Транзистор у режимі ключа Маркування електровакуумних та іонних приладів Активні елементи – без корпусні напівпровідникові прилади Буквено-цифрові індикатори – газорозрядні, вакуумні, напівпровідникові Диференційні підсилювачі Різновиди схем транзисторних автогенераторів Трифазні випрямлячі При частотно-імпульсному регулюванні (Ч1Р) змінюють частоту (період) надходження імпульсів при їх фіксованій тривалості Однофазний двопівперіодний керований випрямляч з нульовим виводом Однофазний інвертор струму Тригер на біполярних транзисторах (симетричний тригер з лічильним запуском) Логічні ІМС з емітерними зв'язками (перемикачі струму) Принцип телефонного зв'язку по проводах Внутрівиробничий телефонний зв'язок (ВВТЗ) призначається для встановлення з'єднань між виробничими об'єктами. Звичайно це автоматичний зв'язок Загальні принципи функціонування мереж стільникового зв'язку Роумінг
312140
знаков
1
таблица
113
изображений

2. Транзистор у режимі ключа

Найважливішими елементами сучасних схем автоматики і електронних обчислювальних машин є пристрої релейного типу. Головна особливість їх полягає в тому, що під впливом вхідного сигналу режим роботи таких пристроїв різко (стрибкоподібно) міняється. Це дозволяє здійснювати перемикання, або комутацію, різних електричних ланцюгів схеми.

Перемикаючі пристрої релейного типу володіють двома стійкими положеннями, які можуть розглядатися як положення «включено» і «вимкнено». По аналогії з двійковим численням в математиці, в якому існує тільки два дискретні значення «0» і «1», такі пристрої часто називаються також двійковими елементами.

Транзистор є одним з найбільш поширених елементів безконтактних перемикаючих пристроїв. Режим роботи транзистора в перемикаючому пристрої зазвичай називають ключовим. Цей режим характерний тим, що транзистор в процесі роботи періодично переходить з відкритого стану (режиму насичення) в замкнуте (режим відсічки) і навпаки, що відповідає двом стійким станам перемикаючого пристрою.

На мал. 7.19 зображена проста схема ключа на транзисторі рпр, включеному по схемі із загальним емітером.

Замикання транзистора (режим відсічки) спостерігається у тому випадку, коли обидва р-п переходи (емітерний і колекторний) закриті. Для цього достатньо, щоб зворотна напруга на цих переходах була близька до нуля (близько 0,05...0,1 В). З схеми мал. 7.19 видно, що для замикання транзистора типу рпр потрібно подати на його вхід таку напругу, щоб потенціал бази був вищий за потенціал емітера, тобто щоб напруга між базою і емітером задовольняла нерівність UБЕ≥0 (для транзисторів типу npn ознака цієї нерівності буде зворотною).

Напруга на колекторі замкнутого транзистора рівна

де IкБо- зворотний струм колектора.

У замкнутому стані транзистор може знаходитися необмежено довго. Вивести його з цього стійкого стану можна тільки за рахунок зовнішніх дій, наприклад шляхом подачі на вхід транзистора типу рпр запускаючого імпульсу негативної полярності.


Мал. 7.19. Ключова схема на транзисторі

Другим стійким станом є режим насичення відкритого транзистора.

Мал. 7.20. Графічне пояснення роботи транзистора в ключовому режимі: І - режим відсічки; // - активний режим; /// - режим насичення

Насичення наступає у тому випадку, коли обидва р-п переходи транзистора відкриті.

На мал. 7.20, а приведені вихідні статичні характеристики транзистора із загальним емітером. У сімействі цих характеристик проведена пряма навантаження АВ, що виражає залежність струму колектора від напруги на колекторі. Величина струму колектора визначається головним чином величиною струму бази: чим більше струм бази (вхідний струм), тим більше струм колектора. При деякому значенні струму бази колекторний струм досягає максимальної величини Ікмах. Така величина колекторного струму відповідає робочій точці А на мал. 7.20, а. При подальшому збільшенні струму бази струм колектора практично залишається незмінним. Тому струм отримав назву струму насичення і позначається Ікнас. Величина струму насичення відкритого транзистора може бути знайдена по формулі

Струму насичення колектора відповідає величина струму насичення бази

де β - коефіцієнт посилення транзистора по струму.

З мал. 7.20, а видно, що в області насичення (поблизу точки А) напруги між колектором і емітером, як і напруги між будь-якими іншими виводами транзистора, близькі до нуля.

На мал. 7.20, б показана залежність струму колектора від струму бази . З цього малюнка видно, що характеристика має злами на межах області замикання (відсічки) і насичення. Це сприяє чіткішій роботі перемикаючого пристрою. Слідує, проте, мати на увазі, що під час переходу транзистора з одного стійкого стану в інше можливі перехідні процеси, що спотворюють форму імпульсних струмів і напруги в ланцюгах транзистора. На мал. 7.21 приведені тимчасові діаграми, що ілюструють характер зміни колекторного струму під впливом імпульсного вхідного сигналу прямокутної форми.


Мал. 7.21. До пояснення перехідних процесів при роботі транзистора в режимі ключа

Якість транзисторного ключа визначається швидкістю перемикання, тобто часом його переходу з одного стану в інше. Чим вище частотні властивості транзистора, тим вище його швидкодія і тим краще він працює в ключовому режимі.

 

Контрольні запитання:

1.                 Який має вплив температура на роботу транзистора?

2.                 Частотні властивості транзистора?

3.                 В чому суть роботи транзистора в ключовому режимі?


Інструкційна картка № 8 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.3 Транзистори. Тиристори

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

-                     Що собою являє польовий транзистор;

-                     Принцип роботи ПТ;

-                     Графічні позначення;

-                     Основні характеристики ПТ.

ІІІ. Студент повинен уміти:

-                     Вибирати транзистори;

-                     Застосовувати польові транзистори.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [3, с. 44-49].

VІ. Запитання для самостійного опрацювання:

1.                 Польові транзистори.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1.                 На чому ґрунтується принцип роботи уніполярних транзисторів?

2.                 Які бувають типи польових транзисторів?

3.                 Їх принцип роботи?

4.                 Як графічно позначаються польові транзистори?

ІХ. Підсумки опрацювання:

 

Підготував викладач: Бондаренко І.В.


Теоретична частина: Транзистори. Тиристори

 

План:

1.                 Польові транзистори.

Література

1. Польові транзистори

До класу уніполярних відносять транзистори, принцип дії яких ґрунтується на використанні носіїв заряду лише одного знаку (електронів або дірок). Керування струмом в силовому колі уніполярних транзисторів здійснюється зміною провідності каналу, через який протікає струм під впливом електричного поля. Тому уніполярні транзистори ще називаються польовими (ПТ).

Розрізняють ПТ з керуючим р-п переходом (з затвором у вигляді р-п переходу) та з ізольованим затвором. Останні, в свою чергу, поділяються на ПТ із вбудованим каналом та індукованим каналом. ПТ з ізольованим затвором належать до різновиду МДН-транзисторів: конструкція «метал - діелектрик - НП». Коли в якості діелектрика використовують оксид кремнію: конструкція «метал - оксид - НП», ПТ називають відповідно МОН-транзистором.

Характерною рисою ПТ є великий вхідний опір (108 – 1014 Ом).

Широкого розповсюдження ПТ набули завдяки високій технологічності у виробництві, стабільності характеристик і невеликій вартості за масового виробництва.

Польові транзистори з керуючим р-п переходом

Конструкція та принцип дії ПТ з керуючим р-п переходом пояснюється на моделі, наведеній на рис. 2.23.

Рис. 2.23 - ПТ з керуючим р-п переходом

У такого ПТ канал протікання струму являє собою шар НП, наприклад, n-типу, вміщений між двома р-п переходами. Канал має контакти із зовнішніми електродами. Електрод, від якого починають рух носії заряду (у даному разі - електрони), називається витоком В, а електрод, до якого вони рухаються - стоком С.

НП шари p-типу, що створюють із n-шаром два р-п переходи, виконані з більш високою концентрацією основних носіїв, ніж n-шар. Обидва p-шари електрично з'єднані і мають зовнішній електрод, що називається затвором З.

Вихідна напруга підмикається між стоком і витоком, а вхідна напруга (керуюча) - між витоком та затвором, причому на затвор подається зворотна щодо витоку напруга.

Принцип дії такого ПТ полягає у тому, що зі змінами вхідної напруги змінюється ширина р-п переходів, які являють собою ділянки НП, збіднені носіями зарядів (запірний шар). Оскільки p-шар має більшу концентрацію домішки, зміна ширини р-п переходів відбувається головним чином за рахунок більш високоомного n-шару. При цьому змінюється переріз струмопровідного каналу, а отже і його провідність і відповідно вихідний струм приладу.

Особливість цього транзистора полягає у тому, що на провідність каналу впливає як керуюча напруга так і напруга Uсв.

На рис. 2.24,а зовнішню напругу прикладено лише у вхідному колі транзистора. Зміна напруги призводить до зміни провідності каналу за рахунок зміни на однакову величину його перерізу вздовж усього каналу. Та оскільки ІІСВ=0У вихідний струм /-Н).

Рис. 2.24 - Вплив напруг на провідність каналу ПТ з керуючим р-п переходом: а) при Uсв =0; б) при Uзв =0

Аналогічно працюють транзистори з каналом р-типу, лише полярність напруг повинна бути зворотною.

На рис. 2.25 наведені умовні позначення ПТ з керуючим р-п переходом.

Рис. 2.25 - Умовні позначення ПТ з керуючим р-п переходом:

а) з каналом n-типу, б) з каналом р-типу

Роботу зазначених транзисторів визначають сім'ї ВАХ двох видів: стокові і стік-затворні.

Стокові (вихідні) характеристики, наведені на рис. 2.26 показують залежність струму стоку від напруги стік-витік за фіксованої напруги затвор-витік:


Рис. 2.26 - Стокові ВАХ ПТ з керуючим p-п переходом

На ділянці 1 неробоча ділянка для випадку використання приладу у якості підсилюючого елементу. Тут його використовують як керований резистор.

На ділянці 2 робоча ділянка у режимі підсилення.

Ділянка 3 відповідає пробою приладу.

Стік-затворні (вхідні) ВАХ відображають залежність струму стоку від напруги затвор-витік за фіксованої напруги стік-витік:

Вхідна ВАХ зображена на рис. 2.27.

Рис. 2.27-Вхідна ВАХ ПТ з керуючим р-п переходом

Параметри ПТ з керуючим р-п переходом:

- максимальне значення струму стоку, сягає від десятків міліампер до одного ампера;

- максимальне значення напруги стік-витік, становить до 100 В;

- напруга відтинання ;

-внутрішнійопір;

- крутизна стік-затворної характеристики;

- вхідний опір, становить десятки мегаом.

СІТ-транзистори

У середині 70-х років минулого століття багаторічні дослідження (Японія, США) завершились створенням ПТ із статичною індукцією: СІТ-транзистора. Цей транзистор, будучи по суті ПТ з керуючим р-п переходом, є твердотільним аналогом електронновакуумної лампи - тріода, у якої вихідна характеристика при нульовому значенні сигналу керування за формою нагадує характеристику р-n переходу. З ростом від'ємного значення напруги керування характеристики зсуваються вправо.

На відміну від площинної горизонтальної конструкції ПТ з керуючим р-п переходом, СІТ-транзистор має вертикальну конструкцію. Наприклад, p-шари затвору вводяться в n-шар вертикально. Таке виконання забезпечує приладу роботу при напругах до 2000 В й частотах до 500 кГц. А розміщення на одному кристалі великого числа елементарних транзисторів з наступним їх паралельним з'єднанням забезпечує робочі струми до 500 А - це вже є силовим електронним приладом!

Крім роботи в режимі ПТ, цей транзистор може працювати і в режимі біполярного транзистора, коли на затвор подасться додатне зміщення. При цьому падіння напруги на приладі у відкритому стані зменшується.

Умовне позначення СІТ-транзистора наведене на рис. 2.28.

Рис. 2.28 - Умовне позначення СІТ-транзистора


МДН-транзистори

На відміну від ПТ з керуючим р-п переходом, у яких затвор має безпосередній електричний контакт із суміжною областю струмопровідного каналу, у МДН-транзисторів затвор, що являє собою, наприклад, алюмінієву плівку (Аl), ізольований від зазначеної області шаром діелектрика. Тому МДН-транзистори відносять до класу ПТ з ізольованим затвором. Наявність діелектрика забезпечує високий вхідний опір цих транзисторів (1012 - 1014 Ом).

Частіше у якості діелектрика використовують оксид кремнію і тоді ПТ називають МОН-транзистором (метал - окисид - НП). Такі транзистори бувають із вбудованим і індукованим каналами. Останні більш розповсюджені.

Конструкція МОН-транзистораз індукованим каналом n-типу зображена на рис. 2.29.

Рис. 2.29 - Конструкція МОН-транзистора з індукованим каналом

При позитивній напрузі на затворі відносно витоку поверхневий шар на межі НП з діелектриком збагачується електронами, які притягуються з глибини p-шару (де вони є завдяки тепловій генерації вільних носіїв заряду) до затвору: виникає явище інверсії НП у примежовій зоні, коли p-шар стає n-шаром. Таким чином, між зонами n-шарів наводиться (індукується) канал, по якому може протікати струм від стоку до витоку.

Вихідні ВАХ ПТ з ізольованим затвором подібні до ВАХ ПТ з керуючим р-п переходом, тільки характеристики проходять вище зі збільшенням напруги.

Умовні позначення МДН-транзисторів наведені на рис. 2.30.

Рис. 2.30 - Умовні позначення МДН-транзисторів з каналами: вбудованим n-типу (а); вбудованим р-типу (б); індукованим n-типу (в); індукованим р-типу (г)

ПТ широко використовують як дискретні компоненти електронних пристроїв, а також у складі інтегральних мікросхем.

Контрольні запитання:

1.                 На чому ґрунтується принцип роботи уніполярних транзисторів?

2.                 Які бувають типи польових транзисторів?

3.                 Їх принцип роботи?

4.                 Як графічно позначаються польові транзистори?


Інструкційна картка №9 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.4 Електровакуумні та іонні прилади

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

-                     Що таке розряд;

-                     Види розрядів у газах;

-                     Газорозрядні прилади.

ІІІ. Студент повинен уміти:

-                     Розрізняти основні газорозрядні прилади прилади.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [5, с. 35-50].

VІ. Запитання для самостійного опрацювання:

1.                 Іонні прилади з самостійним розрядом – неонова лампа, стабілітрони, тиратрони тліючого розряду

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1.                 В чому суть роботи газорозрядних приладів?

2.                 Які бувають розряди в газах?

3.                 Які прилади належать до приладів самостійного розряду?

4.                 Які прилади належать до приладів тліючого розряду?

ІХ. Підсумки опрацювання:

Підготував викладач: Бондаренко І.В.


Теоретична частина: Електровакуумні та іонні прилади

 

План:

1.                 Іонні прилади з самостійним розрядом – неонова лампа, стабілітрони, тиратрони тліючого розряду

Література

1. Іонні прилади з самостійним розрядом – неонова лампа, стабілітрони, тиратрони тліючого розряду

В іонних (газорозрядних) приладах, які посідають більш скромне місце в електронній техніці, ніж електровакуумні й особливо напівпровідникові прилади, однак застосовуються досить широко, електричний струм утворюється не у вакуумі, а в газовому середовищі, в умовах зіткнення електронів з молекулами газу.

Молекули газу під дією ряду причин (електричного або магнітного полів, теплового, світлового випромінювань тощо) розпадаються на іони й електрони, і газ стає провідним. Однак у природних умовах кількість електронів і іонів в одиниці об'єму газу порівняно невелика, оскільки іонізуюча дія зовнішніх факторів досить слабка, одночасно з процесом розпадання молекул (іонізацією) практично відбувається рівноцінний процес — рекомбінація, тобто процес сполучення електронів і іонів у нейтральні молекули (деіонізація). Тому електропровідність газу в природних умовах настільки мала, що його можна вважати ізолятором. Якщо газ перебуває в розрідженому стані, то можливості для деіонізації зменшуються, оскільки тепер в одиниці об'єму міститься менше молекул, середні відстані між електронами й іонами збільшуються, отже, ймовірність їх зіткнення (а значить, і рекомбінація) різко зменшується. Крім того, кількість електронів і іонів у газі значно збільшується внаслідок штучної зовнішньої дії (наприклад, електричного поля). Обидва ці фактори, що зумовлюють електричну провідність газу, використовуються в іонних приладах.

Конструктивно іонні прилади виготовляють у вигляді герметичних балонів (звичайно скляних), усередині яких розміщені електроди. Балони заповнюють розрідженим інертним газом або парами ртуті.

Коли до електродів іонного приладу прикласти напругу, то під дією електричного поля, що утворилося, позитивно заряджені іони починають рухатися до катода, а електрони до анода. Саме так в іонних приладах утворюється електричний струм.

Сукупність процесів, пов'язаних з проходженням струму через газ, називають електричним розрядом.

Коли напруга, прикладена до електродів іонного приладу, порівняно мала, то струм, що проходить через прилад, незначний і підлягає закону Ома. Цей струм зумовлений наявністю в газі електронів і іонів за рахунок природної іонізації (під впливом зовнішніх факторів). Такий розряд називають несамостійним, оскільки він не утворюється і не розвивається, коли немає зовнішніх іонізуючих факторів. У цьому режимі значна частина електронів і іонів рекомбінує.

Коли поступово підвищувати напругу на електродах приладу, то дуже швидко настане так званий режим насичення, при якому дальше підвищення напруги вже не супроводжується підсиленням струму. Це пояснюється тим, що майже всі електрони й іони, які утворилися в цих умовах за одиницю часу, беруть участь у перенесенні електричних зарядів. Рекомбінувати встигає лише незначна частина їх. Такий розряд називають «тихим», оскільки він без видимих зовнішніх виявів, і вважають його різновидом несамостійного розряду. Якщо далі підвищувати напругу, то настає момент, коли швидкості електронів стають достатніми для розщеплення нейтральних молекул газу на електрони й іони. Починається додаткова іонізація газу, і настає режим самостійного розряду. Електрони й іони, які щойно утворилися, беруть участь в іонізації і т. д. Цей процес наростає лавиноподібно. Струм через прилад збільшується, опір середовища різко спадає, напруга на електродах дещо зменшується. Іонний прилад, як кажуть, «запалюється» (газ у балоні починає світитися) і працює далі в режимі тліючого розряду. Особливістю цього режиму є автоматичне підтримання практично сталої напруги на електродах із зміною струму через прилад у досить широких межах. Сила струму обмежується зовнішнім опором кола. Ця властивість тліючого розряду широко використовується для стабілізації напруги в радіоелектронних схемах. Електроди в режимі тліючого розряду практично не нагріваються.

Дальше підвищення напруги на електродах супроводжується бомбардуванням катода позитивно зарядженими іонами, внаслідок чого катод нагрівається і починає випромінювати електрони (термоелектронна емісія). Кількість електронів, що іонізують газ, різко збільшується, опір ділянки анод — катод знижується і стає таким малим, що струм через прилад обмежується лише зовнішнім опором кола. Напруга на електродах приладу різко спадає. Такий розряд супроводжується яскравим свіченням газу в балоні і називається дуговим. У деяких іонних приладах спеціально встановлюють підігрівний (як в електронних лампах) катод, що дає можливість створити дуговий розряд при більш низьких напругах на електродах.

Ще один вид електричного розряду в газі — іскровий розряд. Він утворюється при високій електричній напрузі і тиску газу, близькому до атмосферного. На початку розряду між електродами утворюється іскровий канал (проскакує іскра, яка іонізує той простір газу, в якому вона утворилася). Цей іскровий канал є мовби провідником між двома електродами іонного приладу, і коли потужність джерела енергії достатня, то в приладі починаються процеси, аналогічні процесам дугового розряду. Коли ж потужність джерела енергії мала, то із зменшенням напруги іскровий розряд припиняється.

Іонні прилади тліючого розряду

Неонова лампа (рис. 1) — найпростіший іонний прилад—складається з балона, заповненого розрідженим інертним газом (неоном) і укріплених всередині балона двох дискових або циліндричних електродів. Характерно, що неонова лампа не має розжарюваного катода.

Коли напруга, прикладена до лампи, менша за напругу запалювання, то в лампі розряд відбувається, проте він дуже слабкий і не має практичного значення. Коли ж прикладена напруга дорівнює напрузі запалювання або, тим більше, перевершує її, то в лампі утворюється тліючий розряд, який супроводжується оранжево-червоним свіченням неону. Коли напруга на електродах лампи стане меншою від напруги гасіння лампи, тліючий розряд припиниться і лампа згасне. Напруга гасіння завжди менша від напруги запалювання.

Рис. 1. – Неонові лампи:

а — СН-1; б — МН-3; в — умовне позначення на схемах.

Неонову лампу можна вмикати в коло постійного і змінного струмів, пам'ятаючи при цьому, що опір «запаленої» лампи дуже малий і різке збільшення струму через неї може призвести до утворення дугового розряду і виходу лампи з ладу. Тому послідовно з лампою вмикають опір, що обмежує силу струму.

Характерна властивість неонової лампи, яка широко використовується на практиці, полягає в тому, що в полях високої частоти ці лампи світяться без підмиканя електродів до джерел живлення, оскільки ерс, потрібна для утворення розряду в газі, створюється електромагнітним полем високої частоти. У лампі в цьому випадку утворюється високочастотний розряд. Ця особливість неонових ламп зумовила їх переважне застосування як індикаторів напруги в радіоапаратурі.

Основні технічні дані неонових ламп типів МН3, МН5, МН11 (мініатюрні неонові) відповідно такі: напруга запалювання 65, 150, 85 В; сила робочого струму 1; 0,2; 5А; строк служби 300, 500, 100 год.

Стабілітрон — іонний стабілізатор напруги — застосовують у мережах постійного струму, коли напругу на навантаженні треба підтримувати незмінною.

У стабілітроні всередині скляного балона (рис. 2, а), заповненого інертним газом (неоном, гелієм, аргоном) або парами ртуті, розміщено два циліндричні електроди: зовнішній — катод 3 і внутрішній— анод 1, а в деяких конструкціях ще й запалюючий електрод 2.

Рис. 2. Стабілітрон:

а— будова; б — вольт-амперна характеристика; в — схема вмикання

Запалюючий електрод з'єднаний з катодом і забезпечує зниження напруги запалювання приладу, оскільки відстань між ним і анодом менша, ніж між катодом і анодом.

Вольт-амперна характеристика стабілітрона (рис. 2, б) показує, що, як тільки прилад «запалиться» U=Uз, напруга на електродах зменшиться до робочої Uр, а струм досягне значення /р. Характеристика відображує стабілізуючу дію приладу: зміна струму в діапазоні від Imin до Imах практично не позначається на напрузі, і його можна вважати постійним. Струм, більший за Ітах, недопустимий, оскільки прилад може перейти в режим дугового розряду, електроди розплавляться і стабілітрон вийде з ладу.

Схему вмикання стабілітрона зображено на рис. 2, в. Принцип стабілізації напруги полягає в тому, що з підвищенням напруги U0 живлення збільшується струм через баластний опір Rб і ділянку тп кола. Здавалося б, мав би збільшитися спад напруги і на резисторі Rб, і наділянні тп. Насправді ж напруга на ділянці тп майже не збільшується, оскільки відповідно до характеристики стабілітрона зміна струму майже не спричинює зміни напруги на його електродах, і через навантаження Rн проходить майже такий самий, як і раніше, струм Ін.

Стабілізатори на стабілітронах прості і досить надійні. Однак у них низький коефіцієнт корисної дії, оскільки при нормальному режимі в колі частина струму проходить через прилад.

Як приклад наведемо технічні дані стабілітронів газорозрядних типів СПП, СГ19С і СГ304С (відповідно): сила струму 5—30, 10—60 і 0,05—1,0 мА, строк служби 1000, 500 і 500 год, напруга горіння 143—155 В, 1,05—1,15 і 28,5-31,5 кВ.

Тиратрон з холодним катодом (рис. 3)—триелектродний іонний прилад тліючого розряду. Всередині балона 4, заповненого інертним газом, закріплено три електроди: катод 1 у формі закритого зверху циліндра; сітка З у вигляді шайби з отвором у центрі і анод 2 — загострений стержень, що проходить крізь отвір у шайбі. Виводами 5 від електродів є тонкі гнучкі провідники.


Рис. 3 – Тиратрон з холодним катодом:

а — будова тиратрона МТХ-90; б — умовне позначення на схемах.

Сітка виконує функції пускового пристрою. На неї подається позитивна напруга (значно менша, ніж на анод), і між нею і катодом встановлюється режим так званого тихого розряду, внаслідок чого поблизу катода утворюється область іонізованого газу. До анода в цей час прикладено високу напругу, проте недостатню для того, щоб тиратрон відкрився, тобто щоб між анодом і катодом утворився тліючий розряд. Тиратрон, як кажуть, перебуває на грані спрацьовування.

Досить тепер подати на сітку запускаючий імпульс, як миттю у просторі між сіткою і катодом утворюється тліючий розряд. Внаслідок додаткової іонізації газу різко збільшується кількість вільних електронів, і, таким чином, створюються умови для утворення тліючого розряду вже на ділянці анод — катод при тій самій анодній напрузі. Тліючий розряд ніби перекидається на анод — тиратрон запалюється. Відразу після цього сітка втрачає свої керівні властивості, оскільки навіть негативна напруга, яку подано на неї, не може заперти тиратрон, тому що негативний заряд сітки буде нейтралізовано позитивними іонами газу, що оточують сітку. Щоб погасити тиратрон, треба зменшити анодну напругу.

Технічні дані тиратронів з холодним катодом марок МТХ-90 (малогабаритний), ТХ-2 і ТХ-5Б відповідно такі: напруга запалювання 150, 350 і 225 В, короткочасний струм анода (не менше) 8,5; 100 і 1,5 мА, довговічність 10000 спрацьовувань 500 і 5000 год.


Контрольні запитання:

1.                 В чому суть роботи газорозрядних приладів?

2.                 Які бувають розряди в газах?

3.                 Які прилади належать до приладів самостійного розряду?

4.                 Які прилади належать до приладів тліючого розряду?


Інструкційна картка №10 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.4 Електровакуумні та іонні прилади

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

-                     Призначення та будову іонних приладів з несамостійним розрядом;

-                     Область застосування приладів.

ІІІ. Студент повинен уміти:

-                     Застосовувати при побудові схем газорозрядні прилади.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [5, с. 35-50].

VІ. Запитання для самостійного опрацювання:

1.                 Іонні прилади з несамостійним розрядом – газотрони, тиратрони дугового розряду.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1.                 Що таке газотрон?

2.                 Призначення та будова газотрону?

3.                 Будова та призначення іскрового розрядника?

ІХ. Підсумки опрацювання:

 

Підготував викладач: Бондаренко І.В.


Теоретична частина: Електровакуумні та іонні прилади

 

План:

1.                 Іонні прилади з несамостійним розрядом – газотрони, тиратрони дугового розряду.

Література

1. Іонні прилади з несамостійним розрядом – газотрони, тиратрони дугового розряду

 

Газотрон (рис. 4, а) — це найпростіший прилад дугового розряду. Всередині колби газотрона, заповненої інертним газом (аргоном, гелієм, ксеноном) або парами ртуті, розміщено два електроди — катод і анод. Конструкція приладу така, що дає можливість при порівняно невеликих анодних напругах утворювати режим дугового розряду, минаючи фазу тліючого розряду.

Вольт-амперна характеристика газотрона (рис. 4, б) показує, що при анодних напругах, які не перевищують напруги запалювання, через газотрон проходить незначний струм, зумовлений термоелектронною емісією катода (ділянка до А). Коли Ua=U3, відбувається інтенсивна іонізація газу й утворюється дуговий розряд. Напруга на аноді дещо зменшується (ділянка АВ) і далі майже не залежить від струму, що проходить через нього (ділянка ВС). Цей режим і є робочим режимом газотрона.


Рис. 4. Газотрон:

а — будова; б — вольт-амперна характеристика; в — умовне позначення на схемах.

Збільшення струму понад iАдоп відповідає точці С на характеристиці, не допускається, оскільки газотрон може вийти з ладу. Основна властивість газотрона — одностороння провідність. Коли до його анода прикладено негативну напругу (відносно катода), то дуговий розряд припиниться. Проте слід зазначити, що через газотрон все-таки піде (хоча й незначний) струм зворотного напрямку, зумовлений наявністю невеликої кількості електронів і іонів на ділянці анод — катод. Цю напругу називають зворотною. Таким чином, газотрону властива одностороння провідність, тобто в одному напрямку він пропускає струм набагато краще, ніж у другому. Разом з тим, коли негативна напруга на аноді перевищить певну величину, то в газотроні утворюється тліючий розряд від анода до катода, який може перейти в дуговий розряд.

Зворотна напруга Uзв значно більша за напругу запалювання U3 тому властивість односторонньої провідності дає можливість використати газотрон у пристроях перетворення змінного струму на постійний — у випрямлячах.

Газотрони порівняно з вакуумними випрямними приладами (кенотронами) мають набагато менший внутрішній опір і при тих самих розмірах пропускають більші струми при порівняно низьких (10—20 В) спадах напруги на ділянці анод — катод. Газотрони мають суттєвий недолік — зворотний струм проходить навіть у випадках невеликих зворотних напруг.

Умовне позначення газотрона подано на рис. 4, в.

Технічні дані газорозрядних газотронів марок ГП-0,3/8, ГП-1/22 і ГП-6/15 відповідно такі: допустима зворотна напруга 8, 22 і 15 кВ, робочий струм 0,3, 1,0 і 6,0 А, строк служби 500, 300 і 500 год.

Іскровий розрядник — найпоширеніший представник іонних приладів, в яких використовується іскровий розряд. У скляному балоні 2 іскрового розрядника (рис. 5) розміщено два електроди 1, з'єднані з вивідними контактами 3. Балон заповнено інертним газом (звичайно це криптон), але на відміну від приладів тліючого або дугового розрядів тиск газу тут вищий. Такі розрядники призначені для захисту ліній зв'язку, антенних пристроїв, схем і приладів від грозових розрядів та інших видів короткочасних перенапружень.

Рис. 5. Іонні розрядники: а — типу РА; б — типу РБ; в — умовне позначення на схемах.

Коли в схемі, яку захищають, діють звичайні напруги, що не перевищують розрахункові, в розряднику встановлюється режим тихого розряду. Опір розрядника в таких випадках настільки великий, що вмикання його в лінію або схему практично не впливає на їх роботу. Коли напруга перевищить допустиму, в розряднику утворюється іскровий розряд, опір його різко спадає, розрядник ніби замикає лінію накоротко, запобігаючи від перевантажень увімкнену в цю лінію апаратуру. Через розрядник при цьому проходить великий струм, а напруга на його електродах знижується.

Коли потужність джерела перенапруження велика, то іскровий розряд перетворюється на дуговий. Коли ж ця потужність мала, то із зменшенням розрядного струму прилад перейде в режим тихого розряду, оскільки при тиску, що в ньому існує, ні іскровий, ні тліючий розряди при нормальній напрузі на електродах не зберігаються.

Контрольні запитання:

1.                 Що таке газотрон?

2.                 Призначення та будова газотрону?

3.                 Будова та призначення іскрового розрядника?


Інструкційна картка №11 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»

І. Тема: 2 Електронні прилади

2.4 Електровакуумні та іонні прилади

Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.

ІІ. Студент повинен знати:

-                     Правила маркування електровакуумних та іонних приладів;

-                     Область застосування приладів.

ІІІ. Студент повинен уміти:

-                     Розшифровувати умовні позначення ламп.

ІV. Дидактичні посібники: Методичні вказівки до опрацювання.

V. Література: [4, с. 22-23].

VІ. Запитання для самостійного опрацювання:

1.                 Маркування електровакуумних та іонних приладів.

VІІ. Методичні вказівки до опрацювання: Теоретична частина.

VІІІ. Контрольні питання для перевірки якості засвоєння знань:

1.                 Що позначає кожен елемент в маркуванні електровакуумних та іонних приладів?

ІХ. Підсумки опрацювання:

 

Підготував викладач: Бондаренко І.В.


Теоретична частина: Електровакуумні та іонні прилади

 

План:


Информация о работе «Електроніка та мікропроцесорна техніка»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 312140
Количество таблиц: 1
Количество изображений: 113

Похожие работы

Скачать
148745
30
12

... обміну даними з ПЭВМ у процесі виконання програми користувача; 11.      Вкажіть типи буферних схем, використаних в УУМС-2. Їх призначення та особливості роботи. 12.      Дайте визначення адресного простору мікропроцесорної системи та розпишіть його розподіл в УУМС-2. Адресний простір УУМС складається з областей, состав яких показаний у табл.2. Варто звернути увагу, що внутрішні адресні області ...

Скачать
86358
0
0

... ілу (Додаток 5); 5. Узагальнення і систематизація з розділу у вигляді опорно - інформаційних схем, табличних алгоритмів. 3.3 Анкетування студентів з даної проблеми Думка студентів про проведення теоретичних занять з дисципліни: " Основи електроніки та мікропроцесорної техніки ". Потрібне в відповідях підкреслити, анкету не підписувати. 1. Ви рахуєте, що викладач свій предмет? а) знає і ...

Скачать
69468
35
0

... детально на основі загального вирішення задачі.ЗАВДАННЯ ДО КУРСОВОЇ РОБОТИ Розробити компоненти технічного і програмного забезпечення мікропроцесорного пристрою, який включає аналогово-цифровий і цифро-аналоговий перетворювачі і виконує функцію лінійної системи автоматизованого регулювання. Системи описується заданим пропорційно-інтегро-диференціальним рівнянням, яке зв'язує аналогові сигнали х ...

Скачать
16812
1
2

... ії контурів управління Автоматична система управління дозування формаліна передбачає контролювання таких параметрів як Fстр. кількості постачаємої стружки в дифузійний апарат, є головним чинником який впливає на час подачі формаліна в дифузійну установку, рН дифузійного соку та Т температура середовища протікання процесу, ці показники відображають розвиток мікрофлори в дифузійному апараті та є ...

0 комментариев


Наверх