1. Буквено-цифрові індикатори – газорозрядні, вакуумні, напівпровідникові
Література
1. Буквено-цифрові індикатори – газорозрядні, вакуумні, напівпровідникові
У пристроях відображення інформації, разом з електроннопроменевими трубками, знаходять широке застосування різноманітні індикатори, побудовані на різній фізичній основі. Ретроспективний (звернений до минулого) і перспективний аналіз розвитку індикаторних приладів дозволяє виділити три етапи (три покоління) їх розвитку.
Перше покоління характеризується невеликим числом використовуваних фізичних явищ, відносно низькими значеннями ккд і яскравості, великими габаритами, одноколірністю, високою керуючою напругою. Типовими представниками цього покоління є газорозрядні і вакуумні (накалювання і електролюмінесценції) індикатори, які все ще знаходять широке застосування в електронній апаратурі.
До типових представників другого покоління індикаторних приладів слід віднести напівпровідникові і рідкокристалічні індикатори, а також багаторозрядні люмінесцентні і плазмові монодисплеї. Ці прилади характеризуються високою яскравістю свічення, економічністю, підвищеною інформаційною місткістю, багатоколірністю, сумісністю з інтегральними мікросхемами. Перехід від першого покоління до другого став можливим завдяки вивченню і використанню нових фізичних явищ в напівпровідниках і рідких кристалах.
Третє покоління індикаторних приладів поки можна намітити лише в найбільш загальному вигляді. Передбачається, що це будуть багатоколірні голографічні пристрої плоскої конструкції з чималою (до 104 см3) робочою площею, високою довговічністю (до I06 ч) і надійністю).
Газорозрядні індикатори
Буквено-цифрові газорозрядні індикатори є іонними приладами тліючого розряду, в яких свічення газу в процесі іонізації використовується для оптичної індикації символів, що відображаються.
Цифрові і знакові газорозрядні індикатори (типа ИН-1, ИН-2, ИН-4 і ін.) конструктивно оформляються у вигляді скляного балона, заповненого Неоном під тиском порядку (4...5) ·103 Па. У балоні розміщено один або два сітчасті аноди і необхідну кількість індикаторних дротяних катодів виконаних у вигляді цифр (0...9), букв, символів і інших знаків (кома, мінус, плюс і т. д.).
Мал. 22.1. Цифрова індикаторна лампа:
а - пристрій; б - вигляд з боку торцевої частини колби при включеній цифрі
Мал. 22.2. Схема включення газорозрядного цифрового індикатора
Катоди індикатора мають самостійні виводи і розташовані один за іншим на відстані близько 1 мм. Пристрій двоханодного цифрового індикатора показаний на мал. 22.1, а. Подача напруги між анодом і вибраним катодом викликає тліючий розряд між цими електродами, внаслідок чого символ починає світитися. Свічення спостерігається через балон приладу (мал. 22.1, б). Яскравість свічення може досягати 200 кд/м2 і більше.
Газорозрядні індикатори виконуються як з торцевою, так і з бічною індикацією. Для пристроїв індикації з великою кількістю десяткових знаків переважними виявляються лампи з бічною індикацією.
Схема включення газорозрядного цифрового індикатора приведена на мал. 22.2. Живляча напруга подається на анод щодо одного з катодів. Якщо напруга між анодом і одним з катодів буде рівним напрузі запалення, в балоні спостерігається розряд. Прикатодна область відрізняється яскравим свіченням газу і в оглядовому вікні добре є видимим відповідна цифра. Щоб висвітити іншу цифру, необхідно підключити інший катод за допомогою зовнішнього комутуючого пристрою.
Разом з розглянутими вище газорозрядними індикаторами з десятьма ізольованими катодами, що висвічують окремі знаки, все більш широкого поширення набувають багаторозрядні плазмові дисплеї панельного типу. Один з варіантів такого індикатора представлений на мал. 22.3, а.
Мал. 22.3. Основні конструктивні елементи (а) і схема пристрою управління (б) плазмовою панеллю:
1 - скляні пластини; 2 - центральна мозаїчна пластина; 3 - електроди; К - комутатори; П - генератор того, що підтримує напрузі; Г2 - генератор імпульсів, що «пишуть» (що стирають)
Електронна частина індикатора утворена двома металевими гратами (електродами), що формують зображення, які зміцнюються на прозорих скляних пластинах. Пластини потім з'єднуються в гарячому стані, а освічена плоска судина вакуумується, заповнюється газом і герметизується. Екран є керамічною мозаїчною пластиною, в якій зроблено безліч отворів, створюючи ізольовані один від одного розрядні проміжки.
Проста плоска конструкція подібних індикаторів (їх товщина не перевищує декількох міліметрів) дозволяє створити на їх основі матричні екрани (плазмові панелі), що містять не меншого 104...105 елементарних газорозрядних осередків при роздільній здатності 10...20 лін/см. На екрані можуть висвічуватися різні символи, образи і навіть цілі картини.
Схема пристрою управління такою панеллю приведена на мал. 22.3, б. Високочастотний екран живиться двома напругами від генератора G1 і G2: з частотою в декілька кілогерц, підтримує розряд, і що записує (або що стирає) у вигляді коротких прямокутних імпульсів, «запалювалює» той або інший осередок. Напруга, що виробляється генераторами, підводиться до відповідних шин панелі через спеціальні комутатори (S), що дозволяють управляти формованим зображенням на екрані. Пристрої управління індикатором зазвичай збираються на інтегральних мікросхемах і вмонтовуються на задній стороні панелі. Для отримання кольорового зображення виготовляється прозора панель, кожен шар якої генерує свічення певного кольору (зазвичай червоного, зеленого і синього), а необхідна кольоровість забезпечується управлінням яскравістю свічення відповідного шару.
Вакуумні електролюмінесцентні і розжарювальні індикатори
Основними недоліками газорозрядних індикаторів є необхідність використання для їх роботи порівняно високої напруги, що викликає запалення відповідного газового проміжку. Цей недолік усунений у вакуумних електролюмінесцентних індикаторах, що набули достатньо широкого поширення. Такі індикатори зовні нагадують мініатюрні електронні лампи. Вони є трьохелектродними приладами: електрони, що випускаються нагрітим катодом, прискорюються в електричному полі керуючої сітки, і бомбардують сегменти анода, покриті люмінофором. Пристрій вакуумного люмінесцентного індикатора зображено мал. 22.4, а. Усередині балона послідовно один за іншим розташовані катод прямого розжарення 1, сітка 2 і декілька анодів - сегментів, розташованих в одній площині на загальній керамічній пластинці 3. Для чіткішого обмеження контурів формованого знаку аноди прикриваються металевою пластинкою (маскою) 4 з прорізами, розташованими проти відповідних анодів.
Залежно від хімічного складу люмінофора сформовані знаки можуть бути різного кольору і різної яскравості. Потужність, споживана вакуумними люмінесцентними індикаторами, невелика - долі ватів, що живиться напругою близько 10...30 В. Випускаються в даний час вакуумні люмінесцентні індикатори призначені для роботи в ланцюгах виведення інформації, відтворення знаків в обчислювальних і вимірювальних пристроях широкого застосування.
Мал. 22.4. Вакуумний індикатор електролюмінесценції:
а - пристрій; 6 - зовнішній вигляд; в - комбінацій анодів; г – цоколівка
Мал. 22.5. Сегмент тонкоплівкового розжарювального індикатора:
I - сапфірова підкладка; 2 - тонна вольфрамова смужка (нитка розжарення); 3 - потовщені вольфрамові струмопідводи: 4 - отвір в сапфіровій підкладці
Зовнішній вигляд, комбінація анодів і цоколівка виводів типового вакуумного люмінесцентного індикатора зображені на мал. 22.4, б, в і г.
У розвитку вакуумних індикаторів так само, як і газорозрядних, чітко визначився перехід на створення багаторозрядних матричних дисплеїв. При цьому, разом з люмінесцентними індикаторами, розглянутими вище, можуть бути використані і розжарювальні індикатори, в яких використовується свічення розжарених металевих (вольфрамових) плівок, нанесених на ізоляційну підкладку. Послідовність операцій при виготовленні такого індикатора полягає в наступному (мал. 22.5). На ретельно відполіровану сапфірову підкладку наносять вольфрамову плівку достатньо великої товщини. Потім з лицьового боку підкладки в цій плівці методом фотолітографії формують комутаційні доріжки (потовщені вольфрамові струмопроводи) і тонкі вольфрамові смужки (нитки розжарення) відповідної конфігурації. Далі із зворотного боку підкладки витравляються вікна, внаслідок чого розжарювальні тонкоплівкові елементи виявляються підвішеними на сапфірових траверсах (утримувачах). Малий поперечний перетин розжарювальних елементів і відсутність контакту їх поверхні з підкладкою дозволяють понизити споживану потужність до міліват. Подібні індикатори, розміщені у відповідних вакуумних корпусах - панелях, забезпечують дуже високу яскравість свічення (що обов'язково при сильному сонячному засвіченні) і високі експлуатаційні характеристики (довговічність, температурну і радіаційну стійкість, сумісність з інтегральними мікросхемами і ін.). Таким чином, використання планарної технології істотно змінює підхід до принципів розробки і конструктивного оформлення вакуумних індикаторів.
Напівпровідникові індикатори
У напівпровідникових (твердотільних) індикаторах широке застосування знаходять світлодіоди, що володіють високою яскравістю свічення, великою швидкодією і довговічністю. Індикатори на світлодіодах виготовляються двох типів; сегментні (цифрові) і матричні (універсальні). Сегментні цифрові індикатори є комбінацією певного числа світлодіодів, розташованих таким чином, що при подачі напруги на відповідні виводи висвічуються цифри 0...9. Один індикатор, що містить сім діодів прямокутної форми, здатний висвічувати всі цифри і деякі букви.
Мал. 22.6. Габарити і цоколівка світлодіодного цифрового індикатора
Мал. 22.7. Структура світлодіодних індикаторів:
а, б - семисегментного цифрового індикатора і його типології, в - матричного цифробуквенного індикатора
Індикатор, що містить шістнадцять діодів, дозволяє відтворювати практично необмежене число знаків.
Габарити і цоколівка типового світлодіодного цифрового індикатора (КЛ104) показані на мал. 22.6. Індикатор оформлений в металевому корпусі, забезпеченому дев'ятьма штирьовими ніжками для підключення живлячої напруги. Маса приладу - не більше 7 р. Максимальний кут (щодо оптичної осі), при якому можливо неспотворене прочитування данних індикатора, рівний 60°. Колір свічення - жовтий.
Розміри робочого кристала світлодіода малі - близько 400 х 400 мкм. Тому випромінюючий кристал - це крапка, що світиться. Символи і цифри не повинні бути менше 3 мм. Для збільшення масштабу світловипромінюючого кристала застосовують лінзи, рефлектори, конічні призми (фокони).
Структура сегментного цифрового індикатора показана на мал. 22.7, а. Цей індикатор дозволяє відтворювати всі десять цифр і крапку. Схема розміщення діодів і їх з'єднань на платі (топологія) показана на мал. 22.7, б (світлодіод, що зображає крапку, обведений кружком).
Матричний індикатор (мал. 22.7, е) містить 35 діодів (7 х 5) і дозволяє відтворювати всі цифри, букви і знаки стандартного коду для обміну інформацією.
Управління світлодіодами в індикаторах здійснюється за допомогою ключових схем. Приклад такої схеми для випадку управління десятирозрядним цифровим семисегментним дисплеєм приведений на мал. 22.8.
Мал. 22.8 - Структурна схема управління десятирозрядним семисегментним дисплеєм
У цій схемі катоди (n-області) світлодіодів однойменних сегментів всіх розрядів сполучені між собою. Тому для їх підключення потрібно всього сім зовнішніх виводів. Так само сполучені між собою аноди семи сегментів кожного розряду. В результаті повне число зовнішніх виводів десятирозрядного дисплея не перевищує 17. Матрична структура управління не дозволяє одночасно включати всі рядки (розряди), якщо цифри (набори сегментів) відрізняються один від одного. Тому схема управління передбачає тимчасове розділення включення кожному з рядків. За допомогою розподільника в кожен даний момент до джерела струму підключається тільки один розряд індикатора. Одночасно на іншу координату матриці подають інформацію, що підлягає відображенню, у вигляді двійково-десяткового або якого-небудь іншого коду. У схемі дешифратора відбувається перетворення вхідного коду, в позиційний (сегментний), тобто підключення вибраного сегменту до джерела струму. Порозрядне включення матриці здійснюється безперервно. Тому в кожному циклі включення через вибрані сегменти кожного розряду протікає імпульс струму, якому відповідає і імпульс висвічення відповідного світлодіода. Принципові електричні схеми розподільника і дешифратора містять транзисторні ключі, схеми, що дозволяють здійснювати безконтактну швидкодіючу комутацію.
В даний час розроблені світлодіоди з перебудовуваним кольором свічення. Зміна кольору досягнута завдяки формуванню в одному приладі двох р-п переходів, один з яких дозволяє отримати зелене свічення, а другий - червоне. При одночасному збудженні обох переходів випромінюється жовте світло. Регулюючи по величині струми через переходи, можна змінювати колір свічення від зеленувато-жовтого до червонувато-жовтого. За допомогою подібних світлодіодів можна створити кольорові пристрої відображення інформації, замінити кінескопи телевізорів чималими плоскими екранами, що дозволяють отримувати кольорове зображення.
Контрольні запитання:
1. Яке призначення мають буквено-цифрові індикатори?
2. Будова та принцип дії газорозрядних індикаторів?
3. Будова та принцип дії вакуумних електролюмінесцентних і розжарювальних індикаторів?
4. Напівпровідникові індикатори, призначення та їх будова?
Інструкційна картка №18 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»
І. Тема: 2 Електронні прилади
2.8 Прилади відображення інформації
Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.
ІІ. Студент повинен знати:
- Будову рідкокристалічного індикатора;
- Принцип роботи рідкокристалічного індикатора;
ІІІ. Студент повинен уміти:
- Відрізняти індикатори різних типів;
- Використовувати індикатори при різних схемних рішеннях.
ІV. Дидактичні посібники: Методичні вказівки до опрацювання.
V. Література: [2, с. 413-417].
VІ. Запитання для самостійного опрацювання:
1. Індикатори на рідких кристалах. Плазмові панелі. Маркування цифрових індикаторів.
VІІ. Методичні вказівки до опрацювання: Теоретична частина.
VІІІ. Контрольні питання для перевірки якості засвоєння знань:
1. Область застосування індикаторів на рідких кристалах?
2. Що називають рідкими кристалами?
3. Що таке сегмент?
4. Конструкція елементарного рідкокристалічного індикатора?
5. В чому полягає принцип роботи рідкокристалічного індикатора?
ІХ. Підсумки опрацювання:
Підготував викладач: Бондаренко І.В.
Теоретична частина: Прилади відображення інформації
План:
1. Індикатори на рідких кристалах. Плазмові панелі. Маркування цифрових індикаторів.
Література
1. Індикатори на рідких кристалах. Плазмові панелі. Маркування цифрових індикаторів
Індикатори на рідких кристалах останніми роками все частіше застосовуються в різноманітній електронній апаратурі. Ці індикатори відрізняються малими габаритами, споживають незначну потужність (не більше 100 мквт) від низьковольтних джерел живлення, забезпечують високу контрастність зображення навіть при достатньо високих рівнях засвічення.
Рідкими кристалами називають особливу групу речовин, що займають проміжне місце між твердим і рідким станами. Ці речовини складаються з ниткоподібних органічних молекул, витягнутих в певних напрямах (мал. 22.9, а). Вони володіють текучістю подібно до рідин, але мають молекулярний порядок твердих речовин. При температурі 15...70°С під дією електричного поля орієнтація молекул змінюється, стає впорядкованою (мал. 22.9, б), а в речовині виникає специфічний ефект динамічного розсіювання світла (що як проходить через речовину, так і відображеного). В результаті цього коефіцієнт заломлення змінюється, і рідкий кристал, непрозорий у нормальному стані, починає пропускати світло. Оскільки рідкокристалічні осередки самі не випромінюють світло, то вони зазвичай використовуються спільно з яким-небудь зовнішнім джерелом світла.
Конструкція елементарної рідкокристалічної ячейки достатньо проста (мал. 22.10). Вона складається з двох скляних пластин 2, покритих з внутрішньої сторони шаром електропровідного матеріалу (3 і 5), і розташованого між ними рідкого кристала 1 товщиною 8...25 мкм. Один з електродів (мал. 22.10) прозорий, інший (мал. 22.10) - може бути або прозорим, якщо індикатор працює на пропускання світла, або дзеркальним, якщо індикатор працює на віддзеркалення. Електроди 3 і 5 розділяє ізоляційна прокладка 4.
Для індикації цифр використовуються елементи, які складаються з восьми сегментів (кожен сегмент - це елементарна рідкокристалічна ячейка). Сім з них необхідні для відтворення десяти цифр, а восьмий сегмент призначений для індикації коми, що відокремлює десяткові дроби від цілих чисел (мал. 22.11).
Мал. 22.9. Рідкокристалічний ячейка:
а - невпорядкована структура без поля; б - впорядкована структура за наявності електричного поля
Мал. 22.10. Конструкція елементарного рідкокристалічного індикатора (рідкокристалічної ячейки):
1 - рідкий кристал; 2 - скляні пластини; 3 - прозорий електрод; 4 - ізоляційна прокладка; 5 - прозорий або такий, що відображає електрод
Мал. 22.11. Конструктивне оформлення цифрового однорозрядного рідкокристалічного індикатора
Мал. 22.12. Конструкція багаторозрядного рідкокристалічного індикатора (дисплея)
Рис 22.13. Схеми, що ілюструють роботу рідкокристалічної ячейки:
а - на віддзеркалення світла; б - на пропускання світла
Мал. 22.14. Схема управління рідкокристалічним індикатором
Для отримання зображення тієї або іншої цифри необхідно впливати за допомогою електричного струму на певні цифрові сегменти.
На мал. 22.12 показаний багаторозрядний індикатор на трьох рідкокристалічних елементах. По суті, такий індикатор є простим рідкокристалічним дисплеєм компактної плоскої конструкції. Слід зазначити, що, окрім цифрової індикації, на такому дисплеї можуть бути відтворені і складніші знаки і символи.
Джерела світла, необхідні для роботи індикаторів на рідких кристалах, можна розташовувати як перед ними, так і позаду них. У першому випадку позаду цифрових сегментів встановлюють дзеркальну пластину (мал. 22.13, про), світло відбивається від неї і проходить через сегменти, прозорість яких залежить від величини струму, що пропускається через них. При роботі індикатора у відображених променях як джерело світла можна використовувати навколишнє освітлення.
У другому випадку джерело світла (мініатюрні лампи розжарювання або люмінесцентні випромінювачі) розташовують так, як показано на мал. 22.13, б. Замість дзеркальної пластини використовується матово-чорна. Індикатор працює в світлі, що проходить. При використанні відповідних фільтрів можна отримати кольорове зображення тих або інших знаків.
Для управління роботою рідкокристалічного індикатора необхідний пристрій, що підключає живлячу напругу до того або іншого сегменту за заданою програмою. З цією метою може бути використана схема, приведена на мал. 22.14. Тут до кожного сегменту підводиться живляча напруга тільки в тому випадку, якщо відповідний транзистор, що управляє, відкритий (на малюнку показаний тільки один транзистор VT7 сьомого сегменту). Між загальним електродом і плюсом джерела живлення включений обмежувальний резистор з опором Roгp = 10... 100 ком. За допомогою високоомних резисторів встановлюється необхідне для роботи сегментів живляча напруга (близько 5 В). При відмиканні транзистора відповідний цифровий сегмент виявляється заземленим, на кристалічну рідину впливатиме повна напруга живлення, і вона стане прозорою, що приведе до висвічення тієї або іншої цифри (знаку, символу).
Контрольні запитання:
1. Область застосування індикаторів на рідких кристалах?
2. Що називають рідкими кристалами?
3. Що таке сегмент?
4. Конструкція елементарного рідкокристалічного індикатора?
5. В чому полягає принцип роботи рідкокристалічного індикатора?
Інструкційна картка №19 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки»
І. Тема: 3 Основи аналогової електронної схемотехніки
3.1 Підсилювачі
Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумової діяльності.
ІІ. Студент повинен знати:
- Принцип роботи простих ППС?
- Принцип роботи диференційного підсилювача.
ІІІ. Студент повинен уміти:
- Читати схеми де використовуються підсилювачі;
- Будувати схеми ППС.
ІV. Дидактичні посібники: Методичні вказівки до опрацювання.
V. Література: [1, с. 110-111].
VІ. Запитання для самостійного опрацювання:
1. Підсилювачі постійного струму прямого підсилення.
2. Диференційні підсилювачі.
VІІ. Методичні вказівки до опрацювання: Теоретична частина.
VІІІ. Контрольні питання для перевірки якості засвоєння знань:
1. Що являється найпростішим представником підсилювача постійного струму?
2. В чому суть роботи двокаскадного ППС прямого підсилення?
3. Принцип роботи диференційного підсилювача?
ІХ. Підсумки опрацювання:
Підготував викладач: Бондаренко І.В.
Теоретична частина: Підсилювачі
План:
1. Підсилювачі постійного струму прямого підсилення.
2. Диференційні підсилювачі.
Література
1. Підсилювачі постійного струму прямого підсилення
Найпростішим представником ППС є підсилювач прямого підсилення з безпосередніми зв'язками. Розглянемо схему двокаскадного підсилювача прямого підсилення, зображену на рис. 4.2.
Рис. 4.2 - Двокаскадний підсилювач постійного струму прямого підсилення
Він складається з двох каскадів, виконаних за схемою з СЕ. Призначення елементів те ж саме, що і у підсилювачах змінного струму. Вхідний сигнал, що надходить до входу першого каскаду, підсилюється і з колектора транзистора VT 1 подається на вхід другого каскаду, виконаного на транзисторі VT2. Після повторного підсилення, сигнал надходить на навантаження R .
На відміну від підсилювача змінного струму, де режим спокою вибирається за умов найліпшого підсилення вхідного сигналу і не впливає на навантаження завдяки наявності реактивних елементів зв'язку, у цьому підсилювачі процеси протікають по іншому.
Напруга спокою першого каскаду U0K безпосередньо подасться на вхід другого і, якщо не прийняти спеціальних заходів, під її дією транзистор насичується. Тобто ні про яке підсилення не може йти мови. Для того, щоб виключити це явище, до емітерного кола VT2 вводять резистор Rе2 на якому виділяється напруга UЕ2 що компенсує напругу UОК, оскільки спрямована зустрічно.
Наявність великих Rе1 та Rе2 призводить до виникнення в схемі глибоких ВЗЗ, що значно знижує коефіцієнт підсилення. Тому такі підсилювачі мають обмежену кількість каскадів (зазвичай не більше двох).
Для того, щоб знизити величину емітерної напруги, можна використати дільник напруги (зображений на рис. 4.2 пунктиром). У цьому випадку навіть на малому опорі Rе2 можна одержати потрібний рівень напруги. Але зменшення ВЗЗ призводить до підвищення втрат потужності, а отже, до зниження к.к.д.
Даний підсилювач має велике значення дрейфу нуля і використовується у випадках, коли немає високих вимог до якості підсилення. Для підвищення стабільності схеми в якості RЕ1 і RE2, використовують терморезистори.
... обміну даними з ПЭВМ у процесі виконання програми користувача; 11. Вкажіть типи буферних схем, використаних в УУМС-2. Їх призначення та особливості роботи. 12. Дайте визначення адресного простору мікропроцесорної системи та розпишіть його розподіл в УУМС-2. Адресний простір УУМС складається з областей, состав яких показаний у табл.2. Варто звернути увагу, що внутрішні адресні області ...
... ілу (Додаток 5); 5. Узагальнення і систематизація з розділу у вигляді опорно - інформаційних схем, табличних алгоритмів. 3.3 Анкетування студентів з даної проблеми Думка студентів про проведення теоретичних занять з дисципліни: " Основи електроніки та мікропроцесорної техніки ". Потрібне в відповідях підкреслити, анкету не підписувати. 1. Ви рахуєте, що викладач свій предмет? а) знає і ...
... детально на основі загального вирішення задачі.ЗАВДАННЯ ДО КУРСОВОЇ РОБОТИ Розробити компоненти технічного і програмного забезпечення мікропроцесорного пристрою, який включає аналогово-цифровий і цифро-аналоговий перетворювачі і виконує функцію лінійної системи автоматизованого регулювання. Системи описується заданим пропорційно-інтегро-диференціальним рівнянням, яке зв'язує аналогові сигнали х ...
... ії контурів управління Автоматична система управління дозування формаліна передбачає контролювання таких параметрів як Fстр. кількості постачаємої стружки в дифузійний апарат, є головним чинником який впливає на час подачі формаліна в дифузійну установку, рН дифузійного соку та Т температура середовища протікання процесу, ці показники відображають розвиток мікрофлори в дифузійному апараті та є ...
0 комментариев