4.1.2. Оптические приборы
При осмотре с помощью оптических приборов происходит увеличение углового размера рассматриваемого объекта. Острота зрения увеличивается во столько раз, во сколько увеличивает оптический прибор. Это позволяет видеть мелкие объекты, которые нельзя обнаружить невооруженным глазом.
Необходимо помнить, что с ростом увеличения оптических приборов значительно сокращаются поле зрения и глубина резкости, поэтому для осмотра деталей применяются в основном приборы не более 20 - 30-кратного увеличения. При общем осмотре и поиске дефектов используют приборы 2 - 16-кратного увеличения, а при анализе обнаруженных дефектов - приборы 15 - 30-кратного увеличения.
4.1.3. Микроскоп стереоскопический МБС-10
Стереоскопические микроскопы находят наиболее широкое применение при визуально-оптической дефектоскопии. Они служат для наблюдения прямого объемного изображения предметов в отраженном и проходящем свете. Зна-
чительным преимуществом микроскопов этого типа является наличие систем Галилея, переключением которых достигается быстрое изменение увеличения при постоянном рабочем расстоянии. В комплект микроскопа входят широкоугольные окуляры с различным увеличением, с помощью которых можно получить нужное значение.
Микроскоп типа МБС используется для оптического контроля малогабаритных и некоторых крупногабаритных деталей. Кроме того, он может применяться при капиллярной и магнитной дефектоскопии.
Линейные значения увеличения микроскопа приведены в табл. 4.1. К микроскопу прилагается четыре пары окуляров увеличения 4, 8, 12, 16 с диоптрийной наводкой, шкалой и сеткой. Округленные значения увеличения указаны на корпусах окуляров.
Общий вид микроскопа показан на рис. 4.1. Основным узлом прибора является оптическая головка 1, в которую вмонтированы все оптические детали. Объектив микроскопа 14 крепится на резьбе к корпусу головки. Выше объектива в корпусе на подшипниках установлен барабан с системами Галилея. На конце оси насажаны рукоятки 12, при вращении которых происходит переключение увеличения объектива. Округленные значения увеличения 7; 4; 2; 1; 0,57 нанесены на рукоятках.
Для того чтобы установить нужное увеличение, необходимо, вращая барабан, совместить цифру на рукоятке 12 с точкой, нанесенной на подшипнике. При этом перефокусировку производить не нужно. Каждое из положений барабана фиксируется щелчком. Оптическая головка имеет механизм фокусировки. При вращении рукояток 18 происходит подъем и опускание оптической головки относительно столика микроскопа. Окулярная насадка устроена так, что позволяет изменять межзрачковое расстояние в соответствии с индивидуальными особенностями глаз наблюдателя. На оправах призм крепятся окулярные трубки 11. Оправы объективов могут поворачиваться в направляющей. При изменении межзрачкового расстояния прибора, вращая призмы вместе с оправами объективов, следует держаться за корпус призм, а не за окулярные трубки.
Контроль объектива можно вести как в проходящем, так и в отраженном свете, для чего имеется осветитель. Он состоит из конденсатора и лампы с патроном, объединенных в общем корпусе. Питание лампы осуществляется от сети переменного тока напряжением 220 В только через блок питания 24.
Рис. 4.1. Микроскоп МБС-10:
1 - барабан с корпусом; 2 - столик микроскопа; 3 - основание стола; 4 - кольцо диоптрийной наводки; 5 - бинокулярная насадка; 6 - рукоятка механизма изменения межзрачкового расстояния; 7 - фиксатор столика; 8 - винты, фиксирующие бинокулярную насадку; 9 - втулка осветителя; 10 - гайка осветителя; 11 -окулярная трубка; 12 - рукоятки переключения увеличений; 13 - стойка; 14 -объектив f = 90 мм; 15 - предметное стекло; 16 - держатели; 17 - рукоятка фокусировки; 18 - рукоятка регулировка хода; 19-кольцо
V. МЕТОДЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СОСТОЯНИЯ РЕЛЬСОВ
Железные дороги Северной Америки ежегодно тратят около 80 млн. дол. На проверку состояния рельсов. Большинство дефектов выявляются до момента их перерастания в опасные, однако изломы рельсов в пути полностью исключить не удается. Поэтому железные дороги ведут исследования по повышению надежности дефектоскопии рельсов в условиях эксплуатации за счет совершенствования существующих методов неразрушающего контроля, особенно за счет более широкого приминения бесконтактных технологий.
Табл 1
Методы | ||||||
Механический и оптический | Проникающее излучение | Электромагнитный и электронный | Звуковой и ультразвуковой | Химико-аналитический | Анализ изображения сигнала | Термический |
Визуально-оптический | Рентгенография | Магнитные частицы | Импульсный эхосигнал | Методом пятна | Выделение видеосигнала | Контактная термография |
Голография | Флуороскопия | Магнитный резонанс | Звуковые колебания | Ионное рассеивание | Цифровое преобразование изображения | Термоэлектрический пробник |
Анализ среза | Гамма-радиография | Эффект Баркгаузена | Акустическая эмиссия | Дифракция рентгеновских лучей | Компьютерная томография | Радиометрия инфракрасных лучей |
Проникающая жидкость | Нейтронная радиография | Вихревой ток | Лазерный | Активация нейтронами | Ультразвуковая спектроскопия | Видеотермография |
Обнаружение течи | Радиометрия обратного рассеивания | СВЧ-излучение | Акустический и ударный | Анализ Мёссбауэра | Анализ контура сигнала | Электротермальный |
Табл 2
Рабочие характеристики ультразвуковых щупов
Щуп преобразователя | Расстояние от щупа до обследуемой детали | Чувствительность | Эффективность | Сложность щупа | Сложность сканирующей системы | Достоверность сигнала | Пригодность к, обследован ню оолыних сооружений |
Скользящий контакт | Контакт | Высокая | Высокая | Низкая | Высокая | Низкая | Низкая |
Погружение | Фокусное расстояние | • | Средняя | • | * | Высокая | * |
Барботер | Контакт | * | Высокая | • | Средняя | Средняя | * |
Водная струя | 1 - 20 см | » | Средняя | Средняя | » | Высокая | Высокая |
Воздушная среда | 1 - 50 см | Средняя | Низкая | Средняя | » | ||
Электромагнитный1 | <0,2см | Низкая | * | Высокая | Высокая | Низкая | Низкая |
Л азер-опти чес ки й | 1 - 1000 см | Средняя | Средняя | Высокая | Высокая |
1 Требуется электропроводный материал
Технология неразрушающего контроля
Методы неразрушающего контроля позволяют оценивать внутреннее или внешнее состояние материалов, деталей или конструкций без их повреждения или нарушения режима работы. Неразрушающий контроль может включать как простой визуальный осмотр, так и сложный ультразвуковой анализ микроструктуры при окружающей температуре или при охлаждении материала. При выборе метода неразрушающего контроля для конкретного применения необходимо иметь представление о его технологии. Помимо изучения физических возможностей метода, важно также ознакомление с очертанием обследуемой детали, типом и предполагаемым местом разрыва или наличием дефекта. В большинстве случаев используются технические требования к методике проверки, в число которых входят:
· уровень аттестации оператора;
· разрешенные методы неразрушающего контроля;
· требования к установке и ее проверке;
· приемочные критерии;
· документация и формы отчетности;
· требования к чистоте исследуемой поверхности до и после проверки.
Большинство существующих технологий неразрушающего контроля можно разделить на семь методов: механический и оптический; проникающее излучение; электромагнитный и электронный; звуковой и ультразвуковой; химико-аналитический; анализ изображения сигнала; термический. В табл1 приведены основные технические средства, используемые в этих методах.
Для проверки рельсов в пути обычно применяют ультразвуковой метод. В нем используются импульсные эхо-сигналы и анализ изменений ультразвука. Эти технические средства доказали свою надежность. Однако все существующие методы неразрушающего контроля имеют свои ограничения по применению. На способность выявлять дефекты в рельсах с помощью ультразвуковых методов оказывают влияние:
· состояние поверхности рельса, характеризующееся наличием отслоений и выщербин металла, сетки поверхностных трещин, избыточной смазки, следов от шлифовальных кругов; геометрия головки рельса (изношенный профиль);
· форма дефекта и его ориентация;
· электрический или механический шум, проникающий в щуп;
· недостаточно плотный контакт щуп с поверхностью рельса.
Таблица 3
Эксплуатационные характеристики бесконтактных ультразвуковых щупов-преобразователей
Щуп преобразователя | Эффективность передатчика | Эффективность приемника | Частота колебаний | Удаленность | Геометрия детали | Скорость сканирования | Расходимость оптического ■,'■■ пучка |
Воздушная среда | Средняя, низкая для металлов | Средняя | 20 кГц-5 МГц | 0,5- 12 см | Следует учитывать многовариантность геометрических параметров деталей | Средняя 40 см/с (2 м/с фиксированная) | Малая (1-5 см) |
Водная струя | Высокая | Высокая | 0,5- 15 МГц | 1 -20 см | Ограниченная по доступности и радиусу кривизны | Тоже | Малая (0,2 -1см) |
Лазер-оптический | Низкая | 20 кГц - 20 М Гц | 1 -1000 см | Весьма переменная | Максимальная 200 см/с (20 м/с фиксированная) | Незначительная (0,05 ~ 1 см) |
Современные ультразвуковые методы проверки ПОСЦЮШИ на использовании жидкого связующего вещества и непосредственном контакте искателя с обследуемой поверхностью. Это ограничивает зону проверяемого сечения рельса. Бесконтактные системы позволяют увеличить площадь проверяемого сечения рельса.
Перспективные технологии
Центр транспортных технологий (ТТС, США) и университет Johns Hopkins работали над идентификацией ультразвуковых технических средств, которые можно использовать для проверки рельсов в пути. Университет провел сопоставление различных ультразвуковых устройств, которые можно применять на контактной и бесконтактной основе. В табл. 2 приведены рабочие характеристики ультразвуковых щупов различных типов, приспособленных для сканирования.
Наиболее перспективными являются бесконтактные технические средства. К ним относятся преобразователи, связанные через воздушную среду или водную струю, а также лазерно-оптические.
В табл. 3 сопоставлены данные по бесконтактным устройствам трех типов. Их сравнение показывает, что путем объединения лазер-оптического передающего преобразователя с принимающим, связанным с рельсом через воздушную среду, при дефектоскопии может не потребоваться смачивание рельсов для лучшего проникновения ультразвука в головку рельса. Применение такой бесконтактной системы позволяет устранить или свести к минимуму некоторые ограничения, присущие обычным ультразвуковым методам проверки рельсов.
Предварительные результаты показали, что использование лазерно-оптических передающих преобразователей, объединенных с принимающими, позволяет выявлять поперечные трещины в подошве рельса. Бесконтактный метод, помимо устранения потребности в жидкой связующей среде между преобразователем и поверхностью рельса, сводит к минимуму помехи, возникающие при проверке контактными ультразвуковыми методами стрелочных переводов и глухих пересечений, стыковых накладок, костылей, рельсовых клемм и других элементов пути.
Схема ультразвуковой дефектоскопии рельсов с помощью лазерного преобразователя
Работу устройства проверили на образце рельса в лабораторных условиях и на рельсах длиной 6,1 м, установленных в пути. Для испытаний в пути преобразователи лазерный и с воздушной связью разместили на ручной рельсовой тележке. Эту систему планировали оценить на испытательном полигоне ТТС к концу 2002г.
При содействии Ассоциации американских железных дорог (AAR) ТТС планировал продолжить разработку методов дефектоскопии рельсов, которые дополнят существующие измерительные системы. Основное внимание будет уделено повышению эффективности проверки состояния рельсов. Удачные варианты планировали реализовать в виде опытных образцов и провести их испытания для оценки эксплуатационных возможностей. Наиболее эффективные системы будут представлены к внедрению.
VI. НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ ПРИ РЕМОНТЕ И ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ ПОДВИЖНОГО СОСТАВА
В.А. СМИРНОВ, заместитель генерального директора — главный инженер ОАО «Научно-исследовательский институт технологии, контроля и диагностики железнодорожного транспорта», кандидат технических наук В.Л. ЛАЗАРЕВ, главный конструктор Проектно-конструкторского бюро локомотивного хозяйства ОАО «РЖД»
Н.Ю. ИЛЬЮЩЕНКОВА, начальник сектора неразрушающего контроля Проектно-конструкторского бюро вагонного хозяйства ОАО «РЖД»
На предприятиях по ремонту подвижного состава железных дорог Германии и Франции применяются ультразвуковой, магнитопорошковый, вихретоковый, визуальный, капиллярный и рентгенографический методы неразрушающего контроля (НК). Основным объектом неразрушающего контроля подвижного состава являются колесные пары.
При поступлении колесных пар в ремонт на первой позиции технологического процесса на автоматизированной установке ультразвукового контроля с элекромагнитоакустическими преобразователями измеряются остаточные механические напряжения в колесах (для подвижного состава с колодочными тормозами). Забракованные колесные пары направляются на термообработку. В дробеструйной установке стальной дробью (диаметром около 1 мм) очищаются диски колес, а также зоны контакта ультразвукового преобразователя с поверхностью оси. Далее при помощи оптической или лазерной автоматизированной измерительной установки выполняются контроль геометрических параметров и обточка колесных пар. Установки измеряют диаметры и профили колес по кругу катания, расстояние между внутренними гранями, ширину обода, длину и диаметр шеек. Колесная пара подъемным устройством устанавливается на стенд и приводится во вращение фрикционным роликом. На оптической установке профили обоих колес видны на экране на фоне шаблона стандартного профиля. Лазерная установка обеспечивает автоматический контроль с электронной паспортизацией данных колесных пар колеи 1435мм диаметром от 630 до 1005мм массой до 2 т. Время проверки колесной пары - порядка 5 мин.
Неразрушающий контроль цельнокатаных колесных пар при ремонте осуществляется с использованием автоматизированной установки AURA (Фраунгофе-ровский институт НК, Германия), оснащенной манипуляторами со сканирующими устройствами для ультразвукового и вихретокового контроля и многоканальной системой сбора и обработки данных.
Контроль поверхности катания на наличие термических трещин (образуются при торможении колодочными тормозами) осуществляется с использованием вихре-токовых преобразователей. Для обеспечения высокой помехозащищенности блоки электроники ультразвукового модуля обработки данных помещены в непосредственной близости от датчиков на манипуляторе сканирующего устройства. В современных модификациях используются многоэлементные преобразователи с фазированными решетками, что позволяет сократить количество датчиков. Перемещение сканирующих устройств, подача контактирующей жидкости (вода) и контрольные операции осуществляются автоматически. Время проверки колесной пары -А—7 мин.
В зависимости от модификации установки контроль осей и колес выполняется раздельно или на одной позиции. Контроль оси производится в зонах наиболее вероятного образования трещин (шейка оси, подступичная часть, места посадки тормозных дисков) с помощью многоэлементных ультразвуковых преобразователей, устанавливаемых на цилиндрические поверхности оси. Преобразователь состоит из 64 чувствительных элементов, каждый из которых имеет определенный угол ввода ультразвука. Время проверки оси — 4—5 мин. В более поздних модификациях установки применяют ультразвуковые преобразователи с фазированными решетками (4 группы преобразователей), позволяющие существенно расширить диаграмму направленности (угол ввода луча может изменяться от 28 до 72°).
Использование установки позволяет выполнить весь спектр контрольных операций в автоматическом режиме с электронной паспортизацией данных. Окончательное решение о годности колесной пары принимает оператор.
Магнитопорошковый контроль дисков цельнокатаных колес подвижного состава проводят вручную с применением люминесцентных магнитных индикаторов. Намагничивание колеса производится по секторам соленоидом переменного тока (способом приложенного поля). Размагничивание колеса при этом не требуется. Качество магнитного индикатора (магнитной суспензии) проверяется на стандартном образце — диск со шлифовочными трещинами. Достаточность освещения ультрафиолетового облучателя проверяется с помощью люксметра. Для лучшей выявляемости дефектов в ультрафиолетовом освещении рабочее место затемнено.
Технология неразрушающего контроля деталей буксового узла ограничена визуальным осмотром роликов, сепараторов и колец без разборки подшипников (подшипники на железных дорогах Германии и Франции не ремонтируют) . Следует отметить повышенное внимание к качеству очистки подшипников, корпусов букс и других деталей буксового узла перед проведением контроля.
Для проведения контроля колесных пар в процессе эксплуатации в смотровых канавах (на эстакадах) пунктов технического обслуживания высокоскоростных поездов ICE используются установки UFPE. Установки осуществляют ультразвуковой контроль дисков колесных пар методом V-образного прозвучивания, для чего используются 4 группы преобразователей с фазированными решетками, работающими на частоте 2 МГц (в первых модификациях установок использовались 17 и 12 измерительных головок для тяговых и ходовых колесных пар соответственно). В качестве контактной жидкости используется вода.
Для проверки различных типов колесных пар (разный диаметр колес) используют сменные модули и измерительные головки с изменяемой геометрией. Время проверки одной колесной пары менее 10 мин. За последние годы разработаны разные модификации установки, позволяющие проверять одновременно две колесные пары, что обеспечивает повышенную производительность и сокращает время простоя поезда при ремонте и обслуживании. Установки внедряются в депо по обслуживанию скоростных поездов ICE всех модификаций с 2000г. Ежегодно ими выбраковывается около 1% проверенных колесных пар.
Контроль полых осей осуществляется ультразвуковым методом при помощи автоматизированных мобильных MPS 01 и стационарных MPS 02 установок. В состав мобильного комплекса HPS 01 входят держатель головок, телескопическая штанга и тележка для подъезда и установки. Перемещение преобразователей осуществляется внутри оси по винтовой траектории, угол ввода лучей — 0, 37 или 45° в зависимости от диаметра отверстия в оси. Время проверки составляет 20—25 мин.
Первая установка внедрена в 2002г. в депо Гамбург. Всего на предприятиях по ремонту и обслуживанию высокоскоростных и пригородных поездов используется 16 таких установок. Стационарная автоматизированная установка HPS 02 оборудована тремя измерительными головками на телескопическом манипуляторе и позволяет контролировать различные типы полых осей диаметром от 30 до 90 мм.
Для железных дорог Германии ведутся перспективные разработки систем неразрушающего контроля колесных пар при движении поезда со скоростью до 5 км/ч. Датчики устанавливаются вдоль специальных рельсов в виде матрицы 4x130 шт. и осуществляют контроль дисков ультразвуковым методом. Для выявления дефектов в гребне колес используют 80 дополнительных преобразователей. В качестве контактной жидкости используется вода.
Неразрушающий контроль локомотивов на железных дорогах Франции осуществляется преимущественно ручными приборами на механизированных позициях. При осуществлении магнитопорошкового контроля крупногабаритных деталей перемещение намагничивающего устройства, поворот и фиксация контролируемой детали в произвольном положении механизированы. Подача суспензии осуществляется вручную из пластиковой емкости с распылителем.
Величина магнитного поля оценивается по показаниям амперметра генератора тока намагничивающего устройства (допустимая для работы зона выделена на индикаторе цветной маркировкой, которая наносится при аттестации установки). Особенностью организации ультразвукового контроля на железных дорогах Франции является запрет использования заранее установленных программных настроек. На предприятиях по ремонту и обслуживанию высокоскоростных поездов TGV для сокращения времени проверки используются автоматизированные установки, аналогичные применяемым в Германии.
Широкое распространение на железных дорогах Франции получили капиллярные методы контроля для обнаружения поверхностных дефектов крупногабаритных деталей (рамы тележек, картеры дизелей) и деталей, изготовленных из немагнитных материалов (алюминиевые сплавы, легированные стали, композиционные материалы). Используются два вида пенетрантов на основе углеводородов — цветные (окрашенные) для выявления крупных дефектов на больших площадях поверхностей и флюоресцентные - для поиска «тонких» дефектов.
Пенетранты на основе уайт-спирита не применяются в связи с опасностью для человека и низкой эффективностью использования средств индивидуальной защиты. Диапазон рабочих температур большинства применяемых пенетрантов 10-50 °С. В ряде случаев могут использоваться специальные средства с диапазоном, смещенным в сторону более высоких или низких температур. Для визуализации дефектов используются жидкие проявители на базе летучих растворителей. Удаляют пенетрант и проявитель водой.
Типовое время дефектоскопии рамы тележки локомотива капиллярным методом составляет 2 ч (без учета подготовительных операций по очистки поверхности), расход пенетранта при нанесении кисточкой — 1 литр.
Из деталей сцепного устройства в незначительном объеме производится контроль магнитопорошковым способом (либо рентгеноскопией) крюков, преимущественно после выполнения сварочных работ.
Система стандартов в области неразрушающего контроля концерна DB включает качество поставляемых деталей подвижного состава, квалификацию персонала и организацию обучения, технологические процессы и их составляющие, требования к метрологическому обеспечению, анализ результатов, мониторинг и менеджмент.
Головной организаций в области нормативно-технической документации на железных дорогах Германии является DB Systemtech-nik. Для разработки стандарта создается рабочая группа с участием ведущих специалистов этого подразделения, представителей эксплуатирующих организаций концерна DB, научных центров и предприятий-изготовителей продукции. Согласование разработанных стандартов осуществляется Федеральным ведомством железнодорожного транспорта (ЕВА).
Контрольные образцы (колесные лары с искусственными дефектами и т.д.) централизованно изготавливаются и проходят периодическую метрологическую аттестацию в испытательном центре DB Systemtechnik. В качестве характерной особенности средств метрологического обеспечения следует отметить широкое распространение контрольных образцов однократного применения, используемых для проверки качества магнитной суспензии и пе-нетрантов.
Требования к организации и качеству подготовки персонала НК определены международным стандартом EN 473. Ответственным за неразрушающий контроль на предприятиях является технический директор. Контроль качества проведения НК выполняет руководитель группы, имеющий второй либо третий уровень и прошедший дополнительное обучение на специализированных курсах.
Дефектоскописты, как правило, имеют первый уровень и при не-полнои занятости могут выполнять другие операции на ремонтном участке. Сертификация персонала для предприятий DB не является обязательной при условии, что ответственный за НК имеет уровень квалификации не ниже второго по методам НК, применяемым на данном предприятии. Персонал, проводящий операции контроля, проходит начальную подготовку и периодическое (раз в 5 лет) повышение квалификации и ежегодную проверку состояния зрения (для операторов, осуществляющих визуальный, магнитопорошковый и капиллярный контроль).
На железных дорогах Германии подготовку дефектоскопистов осуществляют по единой программе, но с разделением на НК рельсов и подвижного состава. Время подготовки специалиста по программе первого уровня составляет 40 ч. Для работы на автоматизированных установках проводится дополнительное обучение.
Подготовка персонала по неразрушающему контролю на железных дорогах Франции осуществляется в дорожном учебном центре в Руане. Годовая программа обучения — 250 человек. Систему подготовки отличает узкая специализация по видам контроля и типам контролируемых деталей. Оператор готовится для конкретного технологического участка и операции, за счет этого сокращается время подготовки при обеспечении высокого качества практических навыков обнаружения дефектов. Так, обучение оператора ультразвукового контроля колесных пар первого уровня длится 12 дней, периодическое повышение квалификации — четыре дня. Последующее обучение на второй уровень занимает 12 дней. Для магнитопорошкового метода соответственно четыре дня обучения на первый уровень, один день — повышение квалификации, семь дней для обучения на второй уровень. Для капиллярного метода — четыре дня на первый уровень, шесть дней на второй и один день — периодическое повышение квалификации.
VII. БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Контроль качества изделий методами неразрушающего контроля. М.Ф.Капустьян, В.А.Рыбник. ОмГУПС, Омск 2002, 27 c
2. Журнал “Железные дороги мира”-2003, № 9 стр.59-63
3. Журнал “Железнодорожник” 2007, № 3 стр. 73-76
4. Приборы для неразрушающего контроля материалов и изделий. Справочник / Под ред. В. В. Клюева. М.: Машиностроение, 1986. 357 с.
... и цельнокатаные колеса, коленчатые валы дизелей и компрессоров, детали тяговых передач локомотивов. .) контролируется акустическими методами. На их долю приходится 35-40% общего объема операций неразрушающего контроля, выполняемых при изготовлении и ремонте подвижного состава. Применение системы акустических методов НК наряду с другими позволило обеспечить безопасность движения на железнодорожном ...
... его работы исправному техническому состоянию), наличия дефекта (определение места, типа и вида дефекта, причин его возникновения). Системы технического диагностирования разделяются также на общие (для оценки технического состояния сборочных единиц и деталей), функциональные в процессе эксплуатации вагонов, тестовые (когда на ПС или сборочную единицу воздействуют СТД) и комбинированные ( ...
... , гидравлических системах и проч. Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.4. Расчет намагничивающего устройства для магнитопорошкового метода неразрушающего контроля Исходные данные для расчета: 1 Соленоид круглого сечения диаметром 30 мм и длиной 200 мм; 2 Материал сердечника – Сталь 20; 3 Провод обмотки ...
... объекта, средств и условий контроля. Он утверждается руководителем (главным инженером) предприятия по представлению руководителя подразделения НК или работника, выполняющего его функции. Ультразвуковой контроль ближней подступичной части оси колесной пары проводят при полном освидетельствовании колесных пар грузовых и пассажирских вагонов. Согласно руководству по комплексному ультразвуковому ...
0 комментариев