1.6 Непосредственный впрыск
Перспективной разновидностью многоточечного впрыска являются системы непосредственного, или прямого впрыска топлива. От обычных конструкций они отличаются тем, что впрыск бензина происходит не во впускной коллектор, а непосредственно в камеру сгорания. Интересно, что первая в мире система впрыска для серийного бензинового двигателя (Mercedes-Benz 300SL, 1954 год) относилась именно к этой категории. Но там использовались топливные насосы высокого давления с механическим приводом от двигателя, что требовало высокой точности изготовления и тщательной регулировки. Стоимость таких систем и их обслуживания была весьма высока, да и Mercedes-Benz 300SL назвать серийным автомобилем можно лишь с большой натяжкой. Широкого применения они не нашли.
Реализация на современном техническом уровне идеи прямого впрыска для бензиновых двигателей требует решения ряда конструктивных и технологических проблем, и осуществить ее в массовом производстве пока не удается, тем не менее идея считается весьма перспективной, разработки в этом направлении ведутся многими фирмами.
На Tokyo Motor Show в конце 1993 года Toyota показала свой новый двигатель D-4 ("Автопилот #1). Это 4-цилиндровый бензиновый двигатель с непосредственным впрыском топлива, работающий на переобедненной смеси. Степень сжатия 12,5. Топливо подается под давлением более 100 кг/см кв. Применены быстродействующие пьезоэлектрические инжекторы повышенной точности, которые фирма называет электронными. Момент впрыска регулируется в зависимости от нагрузки на двигатель: при малых и средних нагрузках впрыск происходит позднее, при больших - раньше. Для управления турбуленцией потока в цилиндре применен специальный клапан (swirl control valve) в воздушном впускном патрубке, открывающийся при больших нагрузках.
Работа над двигателем продолжается, по окончании его доводки конструкторы надеются добиться 20% экономии топлива. Массовое внедрение двигателей с непосредственным впрыском фирмы Toyota ожидают не ранее 2005-2010 годов.
1.7 Почему возникла необходимость в системах впрыска
А теперь наконец попробуем разобраться, почему собственно системы впрыска получили такое распространение и в чем их преимущество перед теми же карбюраторами?
Может показаться, что ответ лежит на поверхности - системы впрыска позволяют увеличить мощность, улучшить динамику, двигатель становится более экономичным. Действительно, вначале целью внедрения таких систем на серийных автомобилях было прежде всего улучшение ездовых качеств. Однако обвальное распространение впрыска топлива на современных автомобилях обусловлено прежде всего не техническими, а экологическими соображениями.
Как известно, при сгорании бензина в двигателе в атмосферу выбрасывается множество вредных для человека и окружающей среды веществ и соединений. Регламентируется пока (к счастью для автопроизводителей и к несчастью для всех остальных) выброс только трех компонентов выхлопа: окиси углерода (CO), углеводородов (НС) и окислов азота (NOx). Снизить их содержание можно совершенствованием двигателя, оптимизацией процесса сгорания топлива, а также установкой в системе выпуска специальных трехкомпонентных (по числу регламентируемых компонентов выхлопа) каталитических нейтрализаторов отработавших газов. Без них выполнить современные, а тем более планируемые в недалеком будущем нормы по токсичности выхлопа невозможно. А применение катализатора обязательно влечет за собой комплектацию автомобиля системой впрыска топлива.
Массовое внедрение каталитических устройств в системе выпуска отработавших газов и, соответственно, систем впрыска топлива началось в США, где нормы на чистоту выхлопа становились более жесткими, чем в Европе. Уже с 1980 года европейские производители автомобилей были вынуждены поставлять свою продукцию в США с системами впрыска, в то время как на местные рынки по-прежнему шли автомобили с карбюраторными системами питания.
Разработанные к середине 80-х годов трехкомпонентные катализаторы предназначались для нейтрализации продуктов, образующихся при сжигании в двигателе т. н. нормальной топливо-воздушной смеси (весовое соотношение бензин/воздух 1/14,7).
Любое отклонение состава смеси от указанного приводило к падению эффективности работы катализатора и увеличению токсичности выхлопа.
Поддержание нужного состава смеси на различных режимах работы двигателя при наличии массы возмущающих факторов возлагалось на систему впрыска. Для карбюраторов, даже оснащенных электронным управлением, это была совершенно непосильная задача. Да и упрощенные системы впрыска, например, К-Jetronic или KE-модификация тоже не могли решить ее полностью.
Выход был найден следующий. В систему впрыска ввели обратную связь - в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, т. н. лямбда-сенсор. По сигналам этого датчика компьютер системы управления регулировал подачу топлива в двигатель, точно выдерживая нужный состав смеси.
Трехкомпонентный катализатор в сочетании со снабженной лямбда-сенсором системой впрыска работал весьма эффективно - с точки зрения экологов. Но для конструкторов автомобильных двигателей такая схема обернулась серьезной проблемой - дело в том, что максимальная экономичность двигателя достигается при работе на обедненной или даже переобедненной смеси (отношение бензин/воздух 1/25), и конструкторами уже была проделана немалая работа по созданию именно таких двигателей. Однако на обедненных смесях катализатор работает плохо.
За чистоту выхлопа, достигнутую в результате внедрения катализаторов, пока приходится расплачиваться некоторым увеличением расхода топлива по сравнению с результатами, которых удалось добиться к середине 80-х годов на двигателях без катализаторов.
Но увеличение расхода топлива приводит к увеличению общего количества выбросов в атмосферу, пусть даже и более чистых. Круг замыкается. Решение - за экологами, экономистами и политиками.
Тенденция работать на переобедненных смесях, по-видимому, сохранится. Потребуются, конечно, новые катализаторы, способные работать с такими смесями, а сокращение расхода топлива будет достигаться за счет дальнейшего совершенствования и усложнения систем управления двигателем: в конце концов принцип "Максимально достижимой технологии" - это получение наилучших результатов вне зависимости от сложности и стоимости технических решений.
Приверженность переобедненным смесям демонстрируют японские конструкторы. Первый двигатель такого типа Toyota выпустила на рынок в 1984 году. Соотношение бензин/воздух 1/25, многоточечный впрыск, мощная система зажигания, 2 впускных клапана/цилиндр, в системе управления двигателем - дополнительный датчик состава смеси или давления в камере сгорания. Экономия топлива 8 - 10%.
Похожие двигатели в 1991 году выпустили Mitsubishi и Honda, в 1994 году о завершении аналогичной разработки объявил Nissan. Одна из проблем в таких конструкциях - необходимость повышения турбуленции, или завихрения топливо-воздушной смеси в камере сгорания. Завихрение может происходить по-разному - swirl или tumble - как в стиральных машинах с вертикально или горизонтально расположенной осью барабана. В двигателях Toyota и Nissan для завихрения смеси в одном из двух воздушных впускных патрубков каждого цилиндра применен специальный клапан - swirl control valve. Honda для этих целей использует различающееся на 1 мм по высоте приоткрытие впускных клапанов каждого цилиндра,
Mitsubishi - особую конфигурацию впускных патрубков в сочетании с формой днища поршня.
Пока все созданные двигатели имеют относительно небольшой (до 2,0 литра) объем, который можно будет увеличить лишь после создания катализаторов, хорошо работающих с переобедненными смесями. Определенный прогресс в этом направлении уже достигнут. Toyota, кроме того, небезуспешно экспериментирует с системой из двух датчиков кислорода в выпускной системе, один из которых установлен до катализатора, а второй после. Исследуется метод электроподогрева катализатора для улучшения его работы при пуске холодного двигателя. FIAT предлагает использование двух каталитических нейтрализаторов, один из которых установлен близко к выпускному коллектору и способен работать при более высокой температуре.
... школах в курсе «Трактор», а мою дипломную работу, я думаю, можно использовать как методические рекомендации при изучении раздела «Система питания дизельного двигателя». Для приобретения узлов и механизмов системы питания необходимо договориться с механиком колхоза о выделении необходимого со склада машинно-тракторной мастерской и с неисправных двигателей. Полученные детали нужно будет разобрать ...
... : мм2. Принимаем: – число сопловых отверстий. Диаметр сопла форсунки: мм. Заключение В соответствии с предложенной темой дипломного проекта “Модернизация главных двигателей мощностью 440 кВт с целью повышения их технико-экономических показателей” был спроектирован дизель 6ЧНСП18/22 с учётом современных технологий в дизелестроении и показана возможность его установки на судно проекта 14891. ...
0 комментариев