2.4. Фазовая скорость

Фазовая скорость и волны есть скорость распространения точек одинаковой фазы:

Эта скорость равна скорости гармонической волны. Фазовая скорость:

u=/k=

k=2 т.е.u=

 
Доказательство:

W(x,t)

 

U

 

t-kx- =const дифференцируем

u

 

W

 
t-k, U=lim(

W(x,t+)

 

U

 

X

 


UЕ=Ux/cos т.е. т.к. cos<1,.

то фазовая скорость может превышать скорости света

Элементы векторного анализа

Необходимо уметь анализировать не только скалярные, но и векторные функции точки.Скалярные функции: температура неравномерно нагретого тела, плотность неоднородного тела и т. д.Векторные функции: скорость частиц текущей жидкости, сила земного притяжения, магнитное и электрическое напряжение электрического поля.Рассмотрение скалярных и векторных функций точки привело к построению теории поля.

Векторное поле а(М) называется дифференцируемым в точке М, если оно определено в окрестности точки М и если приращение ∆a=a(M’)-a(M) поля может быть представлено в виде:

∆a=А(∆r)+E(∆r);

∆r=MM’; A и E – линейные операторы;

А – не зависит от ∆r; E зависит, при ∆r=0 E=0;

Необходимое и достаточное условие дифференцируемости векторного поля а заключается в дифференцируемости его координат P, Q, R. При этом линейный оператор А изображается матрицей:

дР/дх, дР/ду, дР/дz

А= дQ/дх, дQ/ду, дQ/дz

 дR/дх, дR/ду, дR/дz

и вектор-функция А(∆r) имеет вид:

A(∆r)=1/2{A(∆r)+A*(∆r)}+1/2[pA(r)].

Дивергенция

Сумма диагональных элементов матрицы, представляющей симметричную линейную вектор-функцию ½{A(∆r)+A*(∆r)} не зависит от выбора системы координат: она называется дивергенцией (расхождением) векторного поля а и обозначается diva:

diva=дP/дх+дQ/ду+дR/дz.

Вектор Р называется вихрем (ротором) поля а и записывается в виде:

rota=(дR/ду-дQ/дz ,дР/дz-Rд/дх, дQ/дх-дР/ду );

Если V поле скоростей текущей жидкости и rotV≠0, то частица движется по замкнутым линиям (образуются вихри). divV в этом случае характеризует интенсивность источника divV>0 и стока divV<0, находящегося в этой точке или отсутствие источника и стока.

Сегодня общепринято представлять уравнения Максвелла в векторной форме. Описания в декартовых координатах менее информативно.

Мы в основном будем пользоваться следующимиобозначениями:

1.Всегда используется правая системакоординат: т.е. такая вкоторой положительная ось Х совмещается с осью У,если наблюдатель смотрит вдоль положительного направления оси Z.

2.Векторы обозначаются буквами:

Е – жирный шрифт – вектор;

Е – его модуль

е – единичный вектор в направлении вектора Е.

Амплитуда вектора, который изменяется по синусоиде, обозначается символом с индексом:

Е=еЕ

и (5)

Е=Ео ехрi(wt-xz).

3.Произведение двух векторов Е и Н записывается

- скалярное произведение модуль котрого равен ЕНcos q ЕН

- векторное произведение, модуль которого равен ЕНsinq EH,

Вращение от Е к Н происходит по часовой стрелке, если смотреть по направлению векторного произведения.

4. i,j,k – символы обозначающие единичные векторы OX, OY,OZ.

Дифференциальный векторный оператор (набла):

Ñ=i¶/¶x+j¶/¶y+k¶/¶z;(2) (6)

5.Градиент скалярной функции V определяется следующим образом:

gradV=i¶V/¶x+j¶V/¶y+k¶V/¶z; (7)

V – скалярная величина

gradV – вектор, который может меняться от точки к точке как по величине, так и по направлению.

6.Компоненты вектора Е по осям координат координат обозначаются Ex, Ey, Ez, т.е.

E=iEx+jEykEz (8)

7.Дивергенция векторной функции Е определяется как

divE=ÑE= ¶Ex/¶x+¶Ey/¶y+¶Ez/¶z; (9)

 

Дивергенция вектора Е – это скалярная величина.

Вихрь. Вихрь вектора E – это векторная величина

rotE=ÑxE=i (¶Ez/¶y-¶Ey/¶z)+j (¶Ex/¶z-¶Ez/¶x)+k (¶Ey/¶x-¶Ex/¶y); (10)

иногда пишут curlE вместо rotЕ.

Дивергенция представима в виде суммы следующих скалярных проезведений:

divE=i¶E/¶x+j¶E/¶y+k¶E/¶z (11)

8.Вихрь представим в виде суммы следующих векторных произведений:

rotE= i(¶E/¶x)+j(¶E/¶y)+k(¶E/¶z)

Оператор Лапласа:

D= ¶2/¶x2+¶2/¶y2+¶2/¶z2

Для скалярной функции ¦

D¦=¶2¦/¶x2+¶2¦/¶y2+¶2¦/¶z2

 Для вектора Е

 DЕ=¶2Е/¶x2+¶2Е/¶y2+¶2Е/¶z2

Е=iEx+jEy+kEz

 DЕ=iDЕx+jDЕy+kDЕz.

Вихрь (ротор) – это векторная функция, компоненты которой по осям x,y,z равны соответственно:

(¶Ez/¶y-¶Ey/¶z); (¶Ex/¶z-¶Ez/¶x); (¶Ey/¶x-¶Ex/¶y)

Эта запись циклическая перестановка индексов.

9.Применения оператора Ñ2 к скаляру V означает

Ñ2V=Ñ*ÑV= div(gradV)= ¶2V/¶x2+¶2V/¶y2+¶2V/¶z2; (12)

Ñ2V – скаляр.

10.Применение оператора Ñ2 к вектору Е означает

Ñ2Е=iÑ2Ex+jÑ2Ey+kÑ2Ez=i(¶2Ex/¶x2+¶2Ey/¶y2+¶2Ez/¶z2)+

+j(¶2Ex/¶x2+¶2Ey/¶y2+ ¶2Ez/¶z2)+k(¶2Ex/¶x2+¶2Ey/¶y2+¶2Ez/¶z2); (13)


ЛИТЕРАТУРА

 

1.   Гурский Л.И., Зеленин В.А., Жебин А.П., Вахрин Г.Л. Структура, топология и свойства пленочных резисторов.—Мн.: Навука i тэхнiка, 2007 -- 250 с.

2.    Гурский Л.И., Румак Н.В., Куксо В.В. Зарядовые свойства МОП-структур.—Мн.: Навука i тэхнiка, 2000 -- 200 с.

3.    Мищенко В.А., Городецкий Л.М., Гурский Л.И. и др. Интеллектуальные системы автоматизированного проектирования БИС и СБИС. Мн.: Радио и связь -- 2005. - 450 с.


Информация о работе «Волновые процессы и элементы векторного анализа»
Раздел: Физика
Количество знаков с пробелами: 13293
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
54514
1
0

... энергии одного электрона на их максимальное число, соответствующее определенному энергетическому уровню. Таким образом, мы выходим на представление о существовании в каждом атоме одной или нескольких изоэнергетических поверхностей, которые следует отнести к наиболее сохраняющимся физическим величинам. По всей видимости, эта новая не совсем привычная величина определяет те внешние пространственные ...

Скачать
42743
0
0

... связано с появлением вероятностного мышления, теории относительности, принципа многозначных зависимостей. В рамках преодоления линейного подхода находятся социально-философские концепции XX в. с различными критериями членения исторического процесса. П. Сорокин признавал всеобщую реальность, проявляющуюся в многообразных материально-духовных формах. Исторический процесс, в концеп ции Сорокина, ...

Скачать
60852
0
21

... q расстояние между линиями увеличивается. Это обстоятельство в дальнейшем будет для нас существенно. Лекция 4 25 Лекция 4 4. Законы геометрической оптики 4.1. Прямолинейность распространения света. Принцип Ферма Физика в разных своих разделах часто занимается вопросами весьма несхожими. В частности оптика никак не представляется логическим продолжением предыдущих разделов, которыми мы с Вами ...

Скачать
38688
1
188

... (7.2.15.) Поскольку в рассматриваемой задаче рассматривается только один источник, то учитываем только волну с амплитудой А. В пространстве имеются   2 взаимно перпендикулярных поля ( Е и Н). Как определить направление переноса энергии ?    Пср = ...

0 комментариев


Наверх