Міністерство освіти і науки України
Національний технічний університет
“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”
Кафедра “Обчислювальної техніки та програмування”
Реферат з курсу “Численные методы”
Тема: “ИНТЕРПОЛИРОВАНИЕ И ПРИБЛИЖЕНИЕ ФУНКЦИЙ”
Виконав: студент групиПеревірив:
ХарківСодержание
1. Разделенные разности
2. Интерполяционный многочлен Лагранжа
3. Интерполяционный многочлен Ньютона
4. Аппроксимация функций методом наименьших квадратов
Литература
1. Разделенные разности
Часто экспериментальные данные функциональной зависимости представляются таблицей, в которой шаг по независимой переменной не постоянен. Для работы с таким представлением функции конечные разности и конечно-разностные операторы не пригодны. В этом случае первостепенную роль играют разделенные разности.
Разделенную разность функции f(x) для некоторых двух точек и определяют следующей дробью:
Для построения степенного многочлена, проходящего через заданные точки, необходимо иметь число точек на единицу больше, чем степень многочлена. Согласно определению разделенной разности число их для n точек равно числу сочетаний из n по 2. Это во много раз больше, чем необходимо для построения кривых, проходящих через n точек. Из опыта работы с конечными разностями видно, что разделенных разностей из всего множества достаточно выбрать всего n, но выбрать так, чтобы в их образование входили все (n+1) точек таблицы.
Вполне разумно вычислять разделенные разности только для соседних значений функции в таблице. В этом случае говорят об упорядоченных разделенных разностях. Аргументу табличной функции присваиваются индексы из чисел натурального ряда, начиная с нуля, в результате чего обозначения разделенных разностей для i-той строки таблицы будут .
Повторная разность от разделенной разности есть разделенная разность второго порядка:
В общем случае разделенная разность n-го порядка имеет вид:
2. Интерполяционный многочлен Лагранжа
Произведения из скобочных сомножителей в знаменателе каждого слагаемого напоминают своим видом некий степенной многочлен от переменной , который своими корнями имеет значения , исключая . Многочлен от x с корнями в этих же точках, включая и , будет иметь вид:
Удаляя тот или иной сомножитель из , можно по желанию исключить ненужный нуль многочлена. Если взять i-тое слагаемое без из выражения для разделенной разности n-го порядка и умножить его на , в котором отсутствует сомножитель , то многочлен степени n будет обладать следующими свойствами:
Если умножить на , то полученный многочлен степени n будет проходить через точку с координатами и будет равен нулю во всех точках . Сумма таких многочленов по всем определяет интерполяционный многочлен Лагранжа степени n.
.
3. Интерполяционный многочлен Ньютона
Интерполяционный многочлен в форме многочлена Лагранжа не удобен в случаях, когда необходимо добавлять экспериментальные данные в таблицу с целью повышения точности интерполяции. При этом необходимо проводить все вычисления заново.
Если задачу поставить так, что добавление лишней точки требовало бы лишь добавки некоторого многочлена степени (n+1) к многочлену Лагранжа n-й степени, то эту добавку можно искать, выполнив в общем виде преобразование разности двух многочленов Лагранжа: степени (n+1) и n. Несложные преобразования приводят к следующему соотношению для добавочного многочлена степени (n+1):
,
где – многочлен степени (n+1),
– разделенная разность (n+1)-го порядка.
Если считать разделенную разность нулевого порядка равной значению функции в точке , то
Поступая аналогичным образом и находя последовательно , в конце концов, получим общее выражение для другой формы представления интерполяционного многочлена Лагранжа, которая в литературе называется интерполяционным многочленом Ньютона для неравных интервалов и записывается так:
Надо отметить, что дополнительную точку в таблицу необходимо записывать в самую нижнюю строку таблицы, чтобы не нарушить уже имеющегося упорядочения разностей и ускорить вычисление новых.
И, наконец, надо отметить, что и многочлен Лагранжа, и многочлен Ньютона удобны для вычислений, но после раскрытия скобок и приведения подобных дают один и тот же степенной многочлен.
... ; u +1) её наилучшие приближения En [F;-1,+1] обыкновенными многочленами имеют заданный порядок (n-1 )? При каких ограничениях на непрерывную периодическую функцию f (x) её наилучшее приближение En[f] тригонометрическими полиномами имеют заданный порядок (n-1 )? Подстановка u=cos(x) сводит задачу 1 к задаче 2. Достаточно, следовательно, рассматривать ...
... при построении итерационных методов решения уравнения =0. Например взяв за корень линейного интерполяционного алгебраического многочлена, построенного по значениям и в узле или по значениям и в узлах и , приходят соответственно к методу Ньютона и метода секущих , где - разделенная разность функций для узлов и . Другой подход к построению численных методов решения уравнения ...
... она одновременно проходила через все точки. Поскольку приближенное уравнение изгиба пружинистого бруса имеет вид , то можно допустить, что ее форма между узлами есть алгебраический полином 3-й степени. Вероятно, интерполирующую функцию между каждыми двумя узлами можно взять, например, в таком виде: (*) . Неизвестные коэффициенты ai, bi, ci, di найдем с условий в узлах интерполяции. ...
... Writeln(‘Федеральное агентство по образованию'); GoToXY(22,3); Writeln('Тульский государственный университет'); GoToXY(28,4); Writeln('КАФЕДРА РАДИОЭЛЕКТРОНИКИ'); GoToXY(14,8); Writeln('Интерполяция функции одной переменной методом Ньютона.'); GoToXY(27,9); Writeln('Построение графика полинома.'); GoToXY(34,12); Writeln('Вариант #7'); GoToXY(24,17); Writeln('Студент гр. 220371 ...
0 комментариев