1. Якщо до наявних двох точок розбиття додати нові точки, то нижня сума Дарбу-Стілтьєса може від цього лише зрости, а верхня сума – лише зменшитися.
2. Кожна нижня сума Дарбу-Стілтьєса не перебільшує кожної верхньої суми, хоча б і такій, що відповідає іншому розбиттю проміжку.
Якщо ввести нижній і верхній інтеграли Дарбу-Стілтьєса:
= і ,
то виявляється, що .
Нарешті, за допомогою сум Дарбу-Стілтьєса легко встановити для випадку, що розглядається, основну ознаку існування інтегралу Стілтьєса:
Теорема. Для існування інтегралу Стілтьєса необхідно і достатньо, щоб виконувалося
, або , (4)
якщо під , як зазвичай, розуміти коливання функції в -му проміжку .
2.2 Класи випадків існування інтегралу Стілтьєса
1. Якщо функція а функція має обмежену зміну, то інтеграл Стілтьєса
(5)
існує.
Спочатку припустимо, що монотонно зростає, тоді за довільно заданим , враховуючи рівномірну неперервність функції , знайдеться таке , що на будь-якому проміжку, довжина якого менше , коливання буде менше за . Нехай тепер проміжок розбитий на частини так, що . Тоді всі < і
,
звідки й слідує виконання умови (4), а, отже, і існування інтеграла також.
У загальному випадку, якщо функція має обмежену зміну, її можна представити у вигляді двох зростаючих обмежених функцій: . У відповідності до цього, перетворюється і сума Стілтьєса, що відповідає функції :
Так, за вже доведеним, кожна із сум і при прямує до граничної межі, це справедливо і відносно суми , що і треба було довести.
Можна послабити умови, що накладаються на функцію якщо одночасно посилити вимоги до функції :
2. Якщо функція інтегровна на проміжку за Ріманом, а задовольняє умові Ліпшиця:
(6)
,
то інтеграл (5) існує.
Для того, щоб знов мати можливість застосувати встановлений вище критерій, припустимо спочатку функцію як таку, що не лише задовольняє умові (6), але і монотонно зростаючу.
Враховуючи (6), очевидно , так, що
Але остання сума при і сама прямує до нуля, як наслідок інтегровності (за Ріманом) функції , а тоді прямує до нуля і перша сума, що доводить існування інтеграла (5).
У загальному випадку функції , що задовольняє умові Ліпшиця (6), представимо її у вигляді різниці
=.
Функція =, очевидно, задовольняє умові Ліпшиця, і в той же час монотонно зростає. Теж саме справедливо і для функції =, так як в силу (6), при
і
.
У такому випадку міркування завершено, як і в попередньому випадку.
3. Якщо функція інтегровна за Ріманом, а функцію можна представити у вигляді інтеграла зі змінною верхнею межею інтегрування:
, (7)
де абсолютно інтегровна на проміжку , то інтеграл (5) існує.
Нехай , так, що монотонно зростає. Якщо інтегровна за власним змістом, і виходячи з цього, обмежена: , то для маємо .
Таким чином, у цьому випадку задовольняє умові Ліпшиця, та інтеграл існує в силу (2).
Припустимо тепер, що інтегровна у невласному сенсі. Обмежимося випадком однієї особливої точки, скажімо . Перш за все, за довільно взятим вибираємо так, щоб було
, (8)
де - загальне коливання функції на розглядуваному нами проміжку.
Розіб’ємо проміжок довільно на частини і складемо суму
.
Вона розкладається на дві суми , з яких перша відповідає проміжкам, що цілком містяться в проміжку , а друга – решті проміжків. Останні, скоріш за все, містяться в проміжку , якщо тільки ; тоді в силу (8),
.
З іншого боку, так як на проміжку функція інтегровна у власному сенсі, то за доведеним, при достатньо малому і сума стане меншою за . Звідси слідує (4), що і потрібно було довести.
У загальному випадку, коли функція абсолютно інтегровна на проміжку , ми розглянемо функції
,
очевидно, невід’ємні і інтегровні на даному проміжку. Так як
,
то питання зводиться до вже розглянутого випадку.
ЗАУВАЖЕННЯ. Нехай функція неперервна на проміжку і має, виключаючи лише скінчене число точок, похідну , причому ця похідна інтегровна (у власному чи невласному змісті) від до ; тоді, як відомо, має місце формула (7):
.
Якщо абсолютно інтегровна, то до функції повністю справедливо все викладене в п. 3.[1;3]
З визначення інтегралу Стілтьєса безпосередньо випливають такі його властивості:
1. ;
2. ;
3. ;
4. .
При цьому у випадках 2, 3, 4 з існування інтегралів у правій частині випливає існування інтеграла у лівій частині. Далі маємо
5. ,
у припущенні, що і існують всі три інтеграли.
Для доведення цієї формули достатньо включити точку с в число точок розбиття проміжку , при складанні суми Стілтьєса для інтегралу .
Перш за все, з існування інтеграла уже випливає існування обох інтегралів і .
Для своєрідного граничного процесу, за допомогою якого для стілтьєсової суми отримується інтеграл Стілтьєса, має місце принцип збіжності Больцано-Коші. Таким чином по заданому враховуючи існування інтеграла знайдеться таке , що будь-які дві суми і , яким відповідають і , різняться менш ніж на . Якщо при цьому у склад точок розбиття включити точку с, а точки розбиття, що припадають на проміжок , брати в обох випадках одними й тими самими, то різниця зведеться до різниці двох сум Стілтьєса, що належать вже проміжку , бо решта доданків взаємно скорочуються. Застосовуючи до проміжку і обрахованим для нього стілтьєсовим сумам той же принцип збіжності, зробимо висновок про існування інтеграла . Аналогічним чином встановлюється і існування інтегралу . Але, важливо відмітити, що з існування обох інтегралів і , взагалі кажучи, не випливає існування інтегралу . Щоб упевнитися в цьому, достатньо розглянути приклад. Нехай на проміжку функції і задані наступними рівностями:
Легко побачити, що інтеграли
обидва існують і рівні 0, бо відповідні суми Стілтьєса всі рівні 0: для першого це випливає з того, що завжди =0, для другого – з постійності функції , завдяки чому =0.
У той же час інтеграл не існує. Дійсно, розіб’ємо проміжок так, щоб точка 0 не потрапила у склад точок розбиття, і складемо суму:
.
Якщо точка 0 потрапляє в проміжок , так, що , то в сумі залишиться лише один -й доданок; решта будуть нулі, тому що для . Отже,
.
В залежності від того, чи буде або , виявиться або , так що границі не має
Вказана своєрідна умова пов’язана з наявністю розривів у точці для обох функцій і . [8]
§4. Інтегрування за частинами
Для інтегралів Стілтьєса має місце формула
– (8)
в припущенні, що існує один з цих інтегралів; існування іншого звідси вже випливає. Ця формула носить назву формули інтегрування за частинами. Доведемо її.
Нехай існує інтеграл . Розклавши проміжок [а, b] на частини [xi , xi+1] (i = 0, 1, ..., n — 1), оберемо в цих частинах довільно по точці таким чином, що
Суму Стілтьєса для інтеграла
можна представити у вигляді
Якщо додати або відняти зправа вираз то перепишеться так:
Вираз у фігурних дужках представляє собою стілтьесову суму для інтеграла (існування якого припущено!). Вона відповідає розбиттю проміжку [а, b] точками ділення якщо в якості обраних з проміжків точок узяти xi, а для проміжків , відповідно, а і b. Якщо, як зазвичай, покласти то тепер довжини всіх частинних проміжків не перевищать .
При сума у квадратних дужках прямує до , з чого слідує, що існує границя і для , тобто інтеграл і цей інтеграл визначається формулою (9). [8]
§5. Зведення інтеграла Стілтьєса до інтегралу Рімана
Нехай функція f(x) неперервна на проміжку [a, b], a g(x) монотонно зростає в цьому проміжку, і притому в суворому сенсі. Тоді, як показав Лебег (Н. Lebesgue), інтеграл Стілтьеса за допомогою підстановки безпосередньо зводиться до інтегралу Рімана.
Доведемо тепер, що
(10)
де останній інтеграл береться у звичайному сенсі, його існування забезпечено, так як функція g(v), а з нею і складна функція f(g-1(v)) неперервні.
Для цього розкладемо проміжок [а, b] на частини за допомогою точок ділення
a=x0<x1<…<xi<xi+1<…<xn=b
и складемо стілтьесову суму
Якщо покласти vi = g(xi) (i = 0, 1, . . ., n), то будемо мати
v0<v1< ... <vi< vi+1 < ... <vn = V.
Так як хi = g-1 (vi), то
Цей вираз має вигляд ріманової суми для інтеграла
Маємо
і
так що
Припустимо тепер настільки малими, щоб коливання функції f(x) у всіх проміжках [xі, хі+1] були менше довільно наперед заданого числа > 0. Так як при , очевидно, , то одночасно і <.
В такому випадку
<
Цим доведено, що
звідки и слідує (10). [4;6]
Доведемо наступну теорему:
0 комментариев