1.4.           Композиции осевых симметрий пространства

 

Задача 9. Композиция трех осевых симметрий пространства является осевой симметрией: Sc◦Sb◦Sa=Sl. Какое взаимное положение могут иметь прямые a, b, c? Построить ось l этой композиции в каждом из возможных случаев.

Решение. Равенству Sc◦Sb◦Sa=Sl эквивалентно равенство

Sc◦Sb=Sl◦Sa . (*)

Если прямые b и c параллельны, то Sc◦Sb=. Тогда и правая часть равенства (*) является переносом: Sl◦Sa=. А значит прямые a и l также будут параллельными.

Таким образом, получили, что, если прямые b, c параллельны, то все оси a, b, c и l попарно параллельны (рис. 9а).

h

l

 

 

A

 

a

c

 b

 

l

 

O

c

 

 

a

 

 

b

Рис. 9а  Рис. 9б

Если прямые b и c пересекаются в точке O, то композиция Sc◦Sb является поворотом Rhj (см. [3], c. 15), где h – перпендикуляр к плоскости, проходящей через прямые b и c, при этом точка O принадлежит оси h, угол j=2Ð(b, c) (рис. 9б). Тогда и композиция Sl◦Sa является этим же поворотом Rhj, значит h – перпендикуляр к плоскости, проходящей через прямые a и l, точка пересечения A которых принадлежит оси h, и ориентированный угол между a и l равен углу поворота j.  

Таким образом, если оси b и c пересекаются, то прямая a параллельна плоскости, проходящей через b и c, пересекается с перпендикуляром h к этой плоскости, восстановленным в точке пересечения прямых b и c. Ось l удовлетворяет следующим условиям: точка пересечения A прямых a и h принадлежит l, l параллельна плоскости (b, c), ориентированные углы Ð(a,l)=Ð(b,c). Если точка A принадлежит прямой a, то точки A и O совпадают, т.е. ось l также походит через точку A.

Если прямые b и c скрещиваются, то композиция Sc◦Sb является винтовым движением Rh2j, ось h которого есть общий перпендикуляр к прямым b и c, вектор  коллинеарен оси h, угол j равен ориентированному углу между прямыми b и c (рис. 9в). В силу равенства (*) композиция Sl◦Sa является этим же самым винтовым движением: Sl◦Sa=Rh2j, то есть h – общий перпендикуляр к скрещивающимся прямым a и l, и угол Ð(a, l)=j .


h

l

a

c

 

b

Рис. 9в

Таким образом, если оси b и c - скрещивающиеся, то прямые a, b и c попарно скрещиваются и имеют общий перпендикуляр h. Ось l удовлетворяет следующим условиям: l и h - перпендикулярные прямые, расстояния между прямыми b, c и a, l равны, и углы между этими осями также равны.

Обобщая все рассмотренные случаи, получаем, что композиция трех осевых симметрий является осевой симметрией, если исходные оси либо попарно параллельны, либо попарно скрещиваются и имеют общий перпендикуляр, либо лежат в параллельных плоскостях по две, пересекаются, и прямая, проведенная через точки пересечения, является для осей общим перпендикуляром.

 

Задача 10. Композиция трех осевых симметрий есть перенос: Sc◦Sb◦Sa=. Каково взаимное положение их осей?

Решение. Если прямые b и c параллельны, то композиция Sc◦Sb является переносом . Тогда ◦Sa=, полученное равенство эквивалентно равенству Sa= или Sa= (этот факт легко доказывается по аналогии с композицией переносов в планиметрии, см. [2], с. 308). Это равенство противоречиво, а значит композиция Sc◦Sb◦Sa при параллельных b и c не может быть переносом.

Если прямые b и c пересекаются в точке O, то композиция Sc◦Sb является поворотом Rhj, где h – перпендикуляр к плоскости, проходящей через прямые b и c, при этом точка O принадлежит оси поворота h, и угол j=2Ð(b, c). Тогда исходная композиция Sc◦Sb◦Sa= будет эквивалентна следующей композиции Rhj◦Sa=. Такое возможно только, если поворот Rhj является осевой симметрией пространства, т.е. угол j=±p , при чем оси симметрий a и h параллельны, и расстояние между ними равно . В силу этих рассуждений, получили, что ось a перпендикулярна плоскости (b, c), а прямые b и c перпендикулярны между собой.

Таким образом, при пересекающихся осях b и c для выполнения исходного равенства необходимо, чтобы прямые a, b и c были попарно перпендикулярными.

Если b и c скрещиваются, то композиция Sc◦Sb является винтовым движением Rhj, где h – общий перпендикуляр прямых b и c, угол j=2Ð(b, c), =(рис. 10).


h

B

 

 

b

c

C

 

 

 

Рис. 10

Следовательно, Sc◦Sb◦Sa= эквивалентно равенству Rhj=◦Sa. А это возможно, если угол j=±p, и прямые a и h параллельны, иначе говоря прямая a перпендикулярна b и c. Т.е. исходное равенство при скрещивающихся прямых b и c возможно, если все три оси взаимно перпендикулярны.

Таким образом, композиция трех осевых симметрий пространства есть перенос, если оси этих симметрий попарно перпендикулярны.


Информация о работе «Композиции преобразований»
Раздел: Математика
Количество знаков с пробелами: 25788
Количество таблиц: 28
Количество изображений: 10

Похожие работы

Скачать
34104
0
15

... точка А сместилась в направлении f(l). Следовательно, в силу произвольности точки А, искомая трансформация есть косое сжатие с осью f(q), направлением f(l) и коэффициентом k. 17. Решение задач с помощью трансформации преобразований Задача 1. Даны правильные одинаково ориентированные треугольники OAB, OCD, OEF. Доказать, что середины M, N, P соответственно отрезков BC, DE, AF являются вершинами ...

Скачать
29623
1
13

... в сопряжённых комплексных координатах 1.1. Определение аффинного преобразования Введём определение аффинного преобразования евклидовой плоскости в сопряжённых комплексных координатах. Преобразование евклидовой плоскости называется аффинным, если оно отображает каждую прямую на прямую. [1] 1.2. Формула аффинного преобразования Мы хотим построить теорию аффинных преобразований с помощью ...

Скачать
123981
2
0

... вследствие объективных причин (болезнь детей) в эксперименте принимало участие 5 детей, проявлявших особый интерес к занятиям изобразительной деятельностью. Опытно - экспериментальную работу по развитию декоративного творчества детей старшего дошкольного возраста средствами декоративной композиции мы строили в три этапа: 1 - констатирующий эксперимент; 2 - формирующий эксперимент; 3 - итоговый ...

Скачать
9493
1
0

... идет о повороте в пространстве, надо учитывать, что = . В частности, = (отражение относительно прямой параллельной v и проходящей через О). Аналогично, = . Если при этом j = p это преобразование не зависит от вектора n и является отражением относительно точки О. 4* Композиции 1. Теорема 4 Если f и g два перемещения X, а f*, g* - соответствующие операторы в V, то (f· g)* = f*g*( ...

0 комментариев


Наверх