2.2.2. Оценим тесноту связи между признаками у и х.
Т. к. уравнение у = а + bln x линейно относительно параметров а и b и его линеаризация не была связана с преобразованием зависимой переменной _у, то теснота связи между переменными у и х, оцениваемая с помощью индекса парной корреляции Rxy, также может быть определена с помощью линейного коэффициента парной корреляции ryz
среднее квадратическое отклонение z:
Значение индекса корреляции близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида = a + bz.
2.2.3 Оценим качество построенной модели.
Определим коэффициент детерминации:
т. е. данная модель объясняет 83,8% общей вариации результата у, на долю необъясненной вариации приходится 16,2%.
Следовательно, качество модели высокое.
Найдем величину средней ошибки аппроксимации Аi .
Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора.
Ошибка аппроксимации Аi, i=1…15:
Средняя ошибка аппроксимации:
Ошибка небольшая, качество модели высокое.
2.2.4.Определим средний коэффициент эластичности:
Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,414%.
2.2.5.Оценим статистическую значимость полученного уравнения. Проверим гипотезу H0, что выявленная зависимость у от х носит случайный характер, т.е. полученное уравнение статистически незначимо. Примем α=0,05.
Найдем табличное (критическое) значение F-критерия Фишера:
Найдем фактическое значение F-критерия Фишера:
следовательно, гипотеза H0 отвергается, принимается альтернативная гипотеза H1: с вероятностью 1-α=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.
Построим уравнение регрессии на поле корреляции
2.3. Модель степенной парной регрессии.
2.3.1. Рассчитаем параметры а и b степенной регрессии:
Расчету параметров предшествует процедура линеаризации данного уравнения:
и замена переменных:
Y=lny, X=lnx, A=lna
Параметры уравнения:
Y=A+bX
определяются методом наименьших квадратов:
Рассчитываем таблицу 3.
Определяем b:
Уравнение регрессии:
Построим уравнение регрессии на поле корреляции:
2.3.2. Оценим тесноту связи между признаками у и х с помощью индекса парной корреляции Ryx.
Предварительно рассчитаем теоретическое значение для каждого значения фактора x, и , тогда:
Значение индекса корреляции Rxy близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида:
2.3.3.Оценим качество построенной модели.
Определим индекс детерминации:
R2=0,9362=0,878,
т. е. данная модель объясняет 87,6% общей вариации результата у, а на долю необъясненной вариации приходится 12,4%.
Качество модели высокое.
Найдем величину средней ошибки аппроксимации.
Ошибка аппроксимации Аi, i=1…15:
Средняя ошибка аппроксимации:
Ошибка небольшая, качество модели высокое.
2.3.4. Определим средний коэффициент эластичности:
Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,438%.
2.3.5.Оценим статистическую значимость полученного уравнения.
Проверим гипотезу H0, что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем α=0,05.
табличное (критическое) значение F-критерия Фишера:
фактическое значение F-критерия Фишера:
Таблица 3
№ | x | y | X | Y | YX | X2 | y2 | Аi | |||
1 | 5,3 | 18,4 | 1,668 | 2,912 | 4,857 | 2,781 | 338,56 | 15,93 | 2.47 | 6,12 | 13,44 |
2 | 15,1 | 22,0 | 2,715 | 3,091 | 8,391 | 7,370 | 484,00 | 25,19 | -3,19 | 10,14 | 14,48 |
3 | 24,2 | 32,3 | 3,186 | 3,475 | 11,073 | 10,153 | 1043,29 | 30,96 | 1,34 | 1,80 | 4,15 |
4 | 7,1 | 16,4 | 1,960 | 2,797 | 5,483 | 3,842 | 268,96 | 18,10 | -1,70 | 2,89 | 10,37 |
5 | 11,0 | 22,2 | 2,398 | 3,100 | 7,434 | 5,750 | 492,84 | 21,92 | 0,28 | 0,08 | 1,24 |
6 | 8,5 | 21,7 | 2,140 | 3,077 | 6,586 | 4,580 | 470,89 | 19,58 | 2,12 | 4,48 | 9,75 |
7 | 14,5 | 23,6 | 2,674 | 3,161 | 8,454 | 7,151 | 556,96 | 24,74 | -1,14 | 1,30 | 4,84 |
8 | 10,2 | 18,5 | 2,322 | 2,918 | 6,776 | 5,393 | 342,25 | 21,21 | -2,71 | 7,35 | 14,66 |
9 | 18,6 | 26,1 | 2,923 | 3,262 | 9,535 | 8,545 | 681,21 | 27,59 | -1,49 | 2,22 | 5,71 |
10 | 19,7 | 30,2 | 2,981 | 3,408 | 10,157 | 8,884 | 912,04 | 28,29 | 1,91 | 3,63 | 6,31 |
11 | 21,3 | 28,6 | 3,059 | 3,353 | 10,257 | 9,356 | 817,96 | 29,28 | -0,68 | 0,46 | 2,37 |
12 | 22,1 | 34,0 | 3,096 | 3,526 | 10,916 | 9,583 | 1156,00 | 29,75 | 4,25 | 18,03 | 12,49 |
13 | 4,1 | 14,2 | 1,411 | 2,653 | 3,744 | 1,991 | 201,64 | 14,23 | -0,03 | 0,00 | 0,24 |
14 | 12,0 | 22,1 | 2,485 | 3,096 | 7,692 | 6,175 | 488,41 | 22,78 | -0,68 | 0,46 | 3,06 |
15 | 18,3 | 28,2 | 2,907 | 3,339 | 9,707 | 8,450 | 795,24 | 27,40 | 0,80 | 0,65 | 2,85 |
сумма | 212,0 | 358,5 | 37,924 | 47,170 | 121,062 | 100,003 | 9050,25 | 358,5 | 0,00 | 59,61 | 105,95 |
среднее | 14,133 | 23,900 | 2,528 | 3,145 | 8,071 | 6,667 | 603,350 | 23,90 | 0,00 | 3,97 | 7,06 |
следовательно, гипотеза H0 отвергается, принимается альтернативная гипотеза H1: с вероятностью 1-α=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.
... а также любые колебания, в которых прослеживается закономерность. В качестве примера можно назвать модель экспоненциального сглаживания Брауна. 3. Пример проведения прогнозирования прибыли с использованием пакета SPSS Постановка задачи: Необходимо построить модель, дающую возможность предсказывать размер прибыли некоторой торговой фирмы, если известны данные о ежемесячной прибыли за последние ...
... , и , то можно предположить о правильном распределении объектов и уже существующих двух классах и верно выполненной классификации объектов подмножества М0. 3.2 Пример решения задачи дискриминантным анализом в системе STATISTICA Исходя из данных по 10 странам (рис. 3.1), которые были выбраны и отнесены к соответствующим группам экспертным методом (по уровню медицинского обслуживания), ...
... ). В настоящее время в России начинают развертываться эконометрические исследования, в частности, начинается широкое преподавание этой дисциплины. Кратко рассмотрим в настоящей главе современную структуру эконометрики. Знакомство с ней необходимо для обоснованных суждений о возможностях применения эконометрических методов и моделей в экономических и технико-экономических исследованиях. 1.3. ...
... М.М. Анализ временных рядов и прогнозирование. М.: Финансы и статистика, 2001. 5. Джонстон Дж. Эконометрические методы. М.: Статистика, 1980. 6. Образцова О.Н., Назарова О.В., Канторович Г.Г. Экономическая статистика. Эконометрика. Методические материалы. – М.: ГУ – ВШЭ, 2000. 7. Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2001. – 543 с. ...
0 комментариев