Нанесем график регрессии на диаграмму рассеяния

7529
знаков
7
таблиц
4
изображения

4.   Нанесем график регрессии на диаграмму рассеяния.

5.         Вычислим значения статистики F и коэффициента детерминации R2. Коэффициент детерминации рассчитаем по формуле R2 = rxy2 = 0,9522 = 0,907. Проверим адекватность модели (уравнения регрессии) в целом с помощью F-критерия. Рассчитаем значение статистики F через коэффициент детерминации R2 по формуле:

Получаем: . Зададим уровень значимости б =0,01, по таблице находим квантиль распределения Фишера F0,01;1;8 = 11,26, где 1 – число степеней свободы.

Fфакт. > F0,01;1;8, т.к. 78,098 > 11,26.

Следовательно, делаем вывод о значимости уравнения регрессии при 99% - м уровне значимости.

6.         Вычислим выборочный коэффициент корреляции и проверим гипотезу о ненулевом его значении.

Рассчитаем выборочный коэффициент корреляции по формуле:


Получаем:

Проверка существенности отличия коэффициента корреляции от нуля проводится по схеме: если , то гипотеза о существенном отличии коэффициента корреляции от нуля принимается, в противном случае отвергается.

Здесь t1-б/2,n-2 – квантиль распределения Стьюдента, б - уровень значимости или уровень доверия, n – число наблюдений, (n-2) – число степеней свободы. Значение б задается. Примем б = 0,05, тогда t1-б/2,n-2 = t0,975,8 = 2,37. Получаем:

.

Следовательно, коэффициент корреляции существенно отличается от нуля и существует сильная линейная связь между х и у.

С использованием табличного процессора Ехсеl проведем регрессионную статистику:

Вывод итогов:

Регрессионная статистика
Множественный R 0,952409
R-квадрат 0,907083
Нормированный R-квадрат 0,895468
Стандартная ошибка 21,7332
Наблюдения 10

Дисперсионный анализ
df SS MS F Значимость F
Регрессия 1 36888,245 36888,25 78,09816 2,119E-05
Остаток 8 3778,6545 472,3318
Итого 9 40666,9
Коэфф. Станд. ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 364,8 14,846599 24,57128 8,04E-09 330,56368 399,0363
Переменная X 1 21,14545 2,3927462 8,837316 2,12E-05 15,627772 26,66314

Вычисленные значения коэффициентов b0, b1,значения статистики F, коэффициента детерминации R2 выборочного коэффициента корреляции rxy совпадают с выделенными в таблице.

7. Оценка дисперсии случайной составляющей эконометрической модели вычисляется по формуле .

Используя результаты регрессионной статистики, получаем:

.

8. Проверим значимость вычисленных коэффициентов b0, b1 по t-критерию Стьюдента. Для этого проверяем выполнение неравенств:

 и ,

где

, , , .

Используем результаты регрессионной статистики:


Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95%
Y-пересечение 364,8 14,846599 24,57128 8,04E-09 330,56368 399,0363
Переменная X 1 21,14545 2,3927462 8,837316 2,12E-05 15,627772 26,66314

Получаем: ;  Примем б = 0,05, тогда t1-б/2,n-2 = t0,975,8 = 2,37.

Так как  и , делаем вывод о значимости коэффициентов линейного уравнения регрессии.

9. Доверительные интервалы для коэффициентов b0, b1 получаем с помощью результатов регрессионной статистики.

Доверительный интервал для коэффициента b0 уравнения регрессии:

Доверительный интервал для коэффициента b1 уравнения регрессии:

10. Построим доверительный интервал для дисперсии случайной составляющей эконометрической модели по формуле:

.

Примем б = 0,05, тогда по таблице для 10-элементной выборки q= 0,65.

Получаем:


,

.

11. Построим доверительную область для условного математического ожидания М().

Доверительные интервалы для уравнения линейной регрессии:  находятся по формуле:

где  соответственно верхняя и нижняя границы доверительного интервала; значение независимой переменной  для которого определяется доверительный интервал, квантиль распределения Стьюдента, доверительная вероятность, (n-2) – число степеней свободы;

 

Рассмотрим уравнение: y =364,8 + 21,145x. Пусть  тогда . Зная  и , заполним таблицу:

1 385,95 20,25 4,634 377,327 394,564
2 407,09 12,25 5,215 397,391 416,791
3 428,24 6,25 5,738 417,564 438,908
4 449,38 2,25 6,217 437,819 460,945
5 470,53 0,25 6,661 458,138 482,917
6 491,67 0,25 7,078 478,508 504,838
7 512,82 2,25 7,471 498,921 526,715
8 533,96 6,25 7,845 519,372 548,556
9 555,11 12,25 8,202 539,854 570,365
10 576,25 20,25 8,544 560,363 592,146
сумма 82,5
11 597,4 30,25 8,873 580,897 613,903
12 618,55 42,25 9,190 601,453 635,638

График уравнения регрессии, доверительная полоса, диаграмма рассеяния:

12. С помощью линейной парной регрессии сделаем прогноз величины прибыли на ноябрь и декабрь месяц:

597,4, 618,55.

Нанесем эти значения на диаграмму рассеяния.


Эти значения сопоставимы с границами доверительной области для условного математического ожидания М().

Точность прогнозирования: с вероятностью 0,95 прибыль в ноябре находится в интервале (487,292; 515,508); прибыль в декабре находится в интервале (497,152; 526,376).


Информация о работе «Парная регрессия»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 7529
Количество таблиц: 7
Количество изображений: 4

Похожие работы

Скачать
7127
5
3

о формуле: Таким образом, среднее число государственных вузов в России составляет 570 шт, а вариация 169. ТЕМА 2. Модель парной регрессии Задача 12 1. Предварительно вычисленная ковариация двух рядов составляет -4.32, а вариация ряда занятых в экономике равна 7,24. Средние выборочные равняются 68,5 и 5,87 соответственно. Оцените параметры линейного уравнения парной ...

Скачать
13830
0
0

... деле независимой постоянной составляющей в отклике нет (альтернатива – гипотеза Н1: a ¹ 0). Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика, для парной регрессии: Значение t-статистики сравнивается с табличным значением tg/2(n-1) - g/2-процентной точка распределения Стьюдента с (n-1) степенями свободы. Если |t| < tg/2(n-1) – гипотеза Н0 не ...

Скачать
19930
9
16

... и детерминации и F-критериев Фишера наибольшие. 3. Множественная регрессия Цель работы – овладеть методикой построения линейных моделей множественной регрессии, оценки их существенности и значимости, расчетом показателей множественной регрессии и корреляции. Постановка задачи. По данным изучаемых регионов (таблица 1) изучить зависимость общего коэффициента рождаемости () от уровня бедности ...

Скачать
17439
3
3

... t-критерий Стъюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Но о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки: Оценка значимости коэффициентов чистой регрессии с помощью /-критерия ...

0 комментариев


Наверх