1. Парная линейная регрессия и корреляция

Цель работы - овладеть навыками определения параметров линейной регрессии и корреляции с использованием формул и табличного процессора MS Excel.

1.1 Решение задач с использованием формул

1.1.1 Параметры a и b линейной регрессии

рассчитываются с помощью метода наименьших квадратов. Для этого составим систему нормальных уравнений (1).

По исходным данным определим , , , , в расчетной таблице 1.

Таблица 1 Расчет показателей парной линейной регрессии и корреляции

2

2

1 9.8 10.2 99.96 96.04 104.04 9.847 0.035 0.125 -1.575
2 11.3 10.1 114.13 127.69 102.01 10.088 0.001 0.000 11.300
3 11.5 10.1 116.15 132.25 102.01 10.120 -0.002 0.000 11.500
4 11.3 9.2 103.96 127.69 84.64 10.088 -0.096 0.788 11.300
5 10.9 10.7 116.63 118.81 114.49 10.023 0.063 0.458 10.900
6 11.4 9 102.6 129.96 81 10.104 -0.123 1.218 11.400
7 12.6 10.4 131.04 158.76 108.16 10.297 0.010 0.011 12.409
8 12.2 11.1 135.42 148.84 123.21 10.232 0.078 0.753 12.164
Итого 91 80.8 919.89 1040.04 819.56 80.797 -0.034 3.353 79.397
Среднее 11.375 10.1 114.986 130.005 102.445 10.100 -0.004 ´ ´

Система нормальных уравнений составит:

Решив систему, получим: a = 8,2717; b = 0,1607.

Уравнение линейной регрессии имеет вид:

.

Параметры уравнения можно определить и по следующим формулам:

 = 10,1 – 0,1608. 11,375= 8,2709

Величина коэффициента регрессии b = 0,1607 означает, что с ростом среднедушевых доходов на 1 тыс. руб. общий коэффициент рождаемости увеличится в среднем на 0,1607 раз.

1.1.2 Средний коэффициент эластичности для линейной регрессии находится по формуле:

0,181

При увеличении величины среднедушевого дохода на 1%, общий коэффициент рождаемости в среднем увеличится на 0,181%.


1.1.3 Линейный коэффициент парной корреляции (r) определяется по формуле:

,

где средние квадратические отклонения:

тогда , значит связь между среднедушевым доходом и рождаемостью очень слабая.

1.1.4 Определим коэффициент детерминации:

Таким образом, вариация величины рождаемости на 3,6% зависит от вариации уровня среднедушевых доходов населения, а на остальные (100%-3,6%) 96,4% − от вариации факторов, не включенных в модель.

Подставляя в уравнение регрессии фактические значения x, определим теоретические (расчетные) значения (таблица 1) и найдем величину средней ошибки аппроксимации ():

==0,425


Так как допустимый предел значений  не более 8-10%, качество модели по данному показателю удовлетворительное. Однако средняя ошибка аппроксимации не является главным критерием оценки значимости модели.

С помощью F−критерия Фишера оценим статистическую надежность результатов регрессионного моделирования:

Fфакт==.

Fтабл = 5,99 при .

Так как Fфакт < Fтабл, уравнение регрессии не значимо, статистически не надежно.


Информация о работе «Парная и множественная регрессия и корреляция»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 19930
Количество таблиц: 9
Количество изображений: 16

Похожие работы

Скачать
11640
1
7

... и все коэффициенты корреляции равны 1, то определитель такой матрицы равен 0: . Чем ближе к 0 определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И наоборот, чем ближе к 1 определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов. Проверка мультиколлинеарности факторов может быть ...

Скачать
20995
28
4

... 7,33 1965 81,0 7,52 1966 83,0 7,62 1967 85,4 7,72 1968 85,9 7,89 1969 85,9 7,98 1970 87,0 8,03 1971 90,2 8,21 1972 92,6 8,53 1973 95,0 8,55 1974 93,3 8,28 1975 95,5 8,12 Найдем параметры линейного уравнения множественной регрессии и значения остатков. Дополним таблицу данных столбцами "", "Квадрат разности остатков " и "Квадрат остатка " и заполним их. Таблица ...

Скачать
17439
3
3

... t-критерий Стъюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Но о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки: Оценка значимости коэффициентов чистой регрессии с помощью /-критерия ...

Скачать
11825
8
2

... взяты за 2003 год. Данные взяты из статистического сборника Регионы России Социально-экономические показатели. 2003. Федеральная служба государственной статистики Построение модели множественной регрессии Расчет параметров Рассчитаем необходимые параметры: Признак Ср. знач. СКО Характеристики тесноты связи βi bi Коэф-ты частной корр. F-критерий фактический ...

0 комментариев


Наверх