6. Результат прямого измерения – случайная величина, подчиняющаяся нормальному закону распределения
Результаты, которые получаются при экспериментальном исследовании какого-либо технологического процесса, зависят от целого ряда факторов. Поэтому результат исследования является случайной величиной, распределённой по нормальному закону распределения. Оно названо нормальным, т. к. именно это распределение для случайной величины является обычным и называется гаусовским или лапласским. Под распределением случайной величины понимают совокупность всех возможных значений случайной величины и соответствующих им вероятностей.
Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующим им вероятностям.
При экспериментальном исследовании какого-либо технологического процесса измеряемый результат последнего является случайной величиной, на которую оказывает влияние огромное число факторов (изменение погодных условий, самочувствие оператора, неоднородность сырья, влияние износа измерительной и стабилизирующей аппаратуры и т.д. и т.п.). Именно поэтому результат исследования является случайной величиной, распределенной по нормальному закону. Однако если исследователь какой-либо активный фактор не заметил или отнес его к неактивным, а неконтролируемое изменение этого фактора может вызвать несоразмерно большое изменение эффективности процесса и параметра, характеризующего эту эффективность, то распределение вероятности последнего может нормальному закону не подчиниться.
Точно так же приведет к нарушению нормальности закона распределения наличие в массиве экспериментальных данных грубых ошибок. Именно поэтому в первую очередь проводят анализ на наличие в экспериментальных данных грубых ошибок с принятой доверительной вероятностью.
Случайная величина будет распределена по нормальному закону, если она представляет собой сумму очень большого числа взаимно зависимых случайных величин, влияния каждой из которых ничтожно мало. Если измерения искомой величины y проведены много раз, то результат можно наглядно представить, построив диаграмму, которая показывала бы, как часто получались те или иные значения. Такая диаграмма называется гистограммой. Что бы построить гистограмму нужно разбить весь диапазон измеренных значений на равные интервалы. И посчитать сколько раз каждая величина попадает в каждый интервал.
Если измерения продолжать до тех пор, пока число измеренных значений n не станет очень большим, то ширину интервала можно сделать очень малой. Гистограмма перейдёт в непрерывную прямую, которая называется кривой распределения.
В основе теории случайных ошибок лежат два предположения:
1. при большом числе измерений случайные погрешности одинаково велики, но с разными знаками встречаются одинаково часто;
2. большие (по абсолютной величине) погрешности встречаются реже, чем малые. Т. е. вероятность появления погрешности уменьшается с ростом её величины.
Согласно закону больших чисел при бесконечно большом числе измерений n, истинное значение измеряемой величины y равно среднеарифметическому значению всех результатов измерений ỹ
Для всех m-повторностей можно записать:
Разделив это уравнение на число повторностей m, получим после подстановки:
За экспериментальную оценку истинного значения (математического ожидания) критерия оптимальности у принимается среднеарифметическая оценка результатов всех т повторностей:
Если число m велико (m→∞), то будет справедливо равенство:
Таким образом, при бесконечно большом числе измерений истинное значение измеряемой величины y равно среднеарифметическому значению ỹ всех результатов произведённых измерений: y═ỹ, при m→∞.
При ограниченном числе измерений (m≠∞) среднеарифметическое значение y будет отличаться от истинного значения, т.е. равенство y═ỹ будет неточным, а приближённым: y≈ỹ и величину этого расхождения необходимо оценить.
Если в распоряжении исследователя имеется только единичный результат измерения yk, то оценка истинного значения измеряемой величины будет менее точной. чем среднеарифметическая оценка при любом числе повторностей: |y─ỹ|<|y-yk|.
Появление того или иного значения yk в процессе измерения является случайным событием. Функция плотности нормального распределения случайной величины характеризуется двумя параметрами:
· истинным значением y;
· среднеквадратичным отклонением σ.
а) б)
Рисунок – 1а – кривая плотности нормального распределения; 1б – кривая плотности вероятности нормально распределенной случайной величины при различных дисперсиях
Плотность нормального распределения (рис. 1а) симметрична относительно y и достигает максимального значения при yk= y, стремится к 0 при увеличении.
Квадрат среднеквадратичного отклонения называется дисперсией случайной величины и является количественной характеристикой разброса результатов вокруг истинного значения y. Мера рассеяния результатов отдельных измерений yk от среднего значения ỹ должна выражаться в тех же единицах, то и значения измеряемой величины. В связи с этим в качестве показателя разброса гораздо чаще используют величину σ:
Значения этой величины определяют форму кривой распределения py. Площади под тремя кривыми одинаковы, но при малых значения σ кривые идут более круто и имеют большее значение py. С увеличением σ значение py уменьшается и кривая распределения растягивается вдоль оси y. Т.о. кривая 1 характеризует плотность распределения случайной величины, воспроизводимость которой в повторных измерениях лучше, чем воспроизводимость случайных величин имеющих плотность распределения 2, 4. На практике не возможно произвести слишком много замеров. Поэтому нельзя построить нормальное распределение, чтобы точно определить истинное значение y. В этом случае хорошим приближением к истинному значению можно считать ỹ, а достаточно точной оценкой ошибки выборочную дисперсию ρ²n, вытекающую из закона распределения, но относящуюся к конечному числу измерения. Такое название величины ρ²n объясняется тем, что из всего множества возможных значений yk, т.е. из генеральной совокупности выбирают лишь конечное число значений равное m, называемых выборкой, которая характеризуется выборочным средним значением и выборочной дисперсией.
7. Экспериментальные оценки истинных значений измеряемой случайной величины и её среднеквадратичного отклонения
Если в распоряжении исследователя находится конечное число независимых результатов повторности одного и того же опыта, то он может получить лишь экспериментальные оценки истинного значения и дисперсии результата опыта.
Оценки должны обладать следующими свойствами:
1. Несмещённости, проявляющейся в том, что теоретическое среднее совпадает с истинным значением измеряемого параметра.
2. Состоятельности, когда оценки при неограниченном увеличении числа измерений могут иметь сколь угодно малый доверительный интервал при доверительной вероятности.
3. Эффективности, проявляющейся в том, что из всех несмешанных оценок данная оценка будет иметь наименьшее рассеяние (дисперсию).
Экспериментальная оценка среднеквадратичного отклонения обозначается S с указанием в скобках символа анализируемой величины, т.е.
S (yk) – среднеквадратичного отклонение единичного результата.
S (y) – среднеквадратичное отклонение среднего результата.
Квадрат экспериментальной оценки среднеквадратичного отклонения S² является экспериментальной оценкой дисперсии:
Для обработки результатов наблюдения можно использовать следующую схему:
Определение среднего значения полученных результатов:
Определение отклонения от среднего значения для каждого результата:
Эти отклонения характеризуют абсолютную ошибку определения. Случайные ошибки имеют разные знаки, когда значение результата опыта превышает среднее значение, ошибка опыта считается положительной, когда значение результата опыта меньше среднего значения, ошибка считается отрицательной.
Чем точнее произведены измерения, тем ближе значение отдельных результатов и среднее значение.
Если по m результатам рассчитывают оценку истинного значения , а затем, используя те же результаты, рассчитывают оценки абсолютных отклонений:
то оценку дисперсии единичного результата находят по зависимости:
Разность между числом т независимых результатов ук и числом уравнений, в которых эти результаты уже были использованы для расчета неизвестных оценок, называют числом степеней свободы f:
f=m –1.
Для оценки дисперсии эталонного процесса f=m.
Поскольку средняя оценка является более точной, чем единичная ук, дисперсия средних будет меньше дисперсии единичных результатов в m раз, если рассчитано по всем m единичным результатам ук:
Если в распоряжении исследователя имеется экспериментальная оценка дисперсии S2 (yк) с небольшим конечным числом степеней свободы, то доверительные ошибки рассчитывают с помощью критерия Стьюдента t (P; f):
,
где Р – доверительная вероятность (Р=1-q, q – уровень значимости).
Проверка надёжности полученных результатов по критерию Стьюдента для проведенного числа опытов m при избранной доверительной вероятности (надёжности) Р=0,95; 0,99. Это значит, что 95% или 99% абсолютных отклонений результатов лежит в указанных пределах. Критерий t (P; f) с доверительной вероятностью Р показывает во сколько раз модуль разности между истинным значением определённой величины y и средним значением ỹ больше стандартного отклонения среднего результата.
вание отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению; планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами; планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и ...
ыполненный при помощи ЭВМ. Основная задача теории планирования и обработки результатов экспериментов – это построение статистической модели изучаемого процесса в виде Y = f(X1, X2,…Xk), где X – факторы, Y – функция отклика. Полученную функцию отклика можно использовать для оптимизации изучаемых процессов, то есть определять значения факторов, при которых явление или процесс будет протекать ...
зрения следования нормативам экспериментального вывода. Нормативы, связанные с возможными обобщениями из психологических экспериментов, предполагают разведение разных видов валидности. Внутренняя и внешняя валидность – обязательно обсуждаемые аспекты правильного эксперимента, будь то эксперимент в научных или практических целях. Отличия в выводах из этих экспериментов будут касаться того, как ...
... свободы остается на проверку гипотезы адекватности. Если заранее пренебречь взаимодействиями высших порядков, то имеется возможность получить математическую модель при меньшем числу опытов, реализовав не весь план ДФЭ, а только его часть (дробную реплику). Эксперимент, реализующий часть (дробную реплику) полного факторного эксперимента, называется дробным факторным экспериментом (ДФЭ). ДФЭ ...
0 комментариев