2. Гидравлический расчет проточной части центробежного насоса НЦВС 40/30
2.1.1Расчет основных параметров насоса
Выбор системы насоса определяется коэффициентом быстроходности по формуле
- угловая скорость С-1
h = частота вращения, мин-1
QS – подача, м3/с
H – напор, дм/кг
ηS =
Практика показывает, что коэффициент быстроходности (ηS) судового насоса с удовлетворительным КПД должен быть в пределах:
ηS = 80-150; .
В нашем случае принимаем:
(Рис. 2.1.)
2.1.2 Критический кавитационный запас энергии определяется по формуле:
дм/кг, где
g – ускорение сил тяжести, м3/с
ρ – плотность перекачиваемой жидкости, кг/м3
Ра – давление на выходе, Па
Рn – давление парообразование при заданной температуре, Па
А – коэффициент запаса
HBc-геометрическая высота всасывания, м
hTn- гидравлические потери в прямом трубопроводе, Дм/кг
А = 2; Н = 4 м; Ра = 9,8 · 104 Па;
Принимаем
hТn= 15 дм/кг
дм/кг
2.1.3 Максимально допустимая частота вращения определяется по формуле
мин-1, где
Скр – кавитационный коэффициент быстроходности, выбирается в зависимости от nS: для циркулярного насоса Скр = 1000÷Q1 – принимаем равным QTk имеет колесо с односторонним всасыванием.
мин-1
Рабочая частота меньше максимальной.
2.1.4 Приведенный диаметр входа в колесо определяется по формуле:
мм
D1прав – mm
n= мин-1
D1прав = 4 · 103 · = 61,9 мм
2.1.5 Гидравлический КПД насоса определяется по формуле Ламакина А. А.
, где
D1прав – мм
2.1.6 Объемный КПД насоса определяется по формуле
2.1.7 Максимальный КПД насоса
Механический КПД насоса принимается:
Принимаем ηмех=0,95
2.1.8 Полный КПД насоса
2.1.9 Мощность, потребляемая насосом (колесом)
кВт
вт
2.1.10 Мощность на валу электродвигателя с учетом 10% запаса
NДВ=1,1·N кВт
NДВ=1,1·4425,69=4868,26 вт
2.2 Определение основных размеров рабочего колеса
2.2.1 Крутящий момент на валу насоса.
Н,М, где (2.10)
η– обороты вала насоса, Мин-1
кгс · м = 26,13 Н.М
2.2.2 Диаметр вала насоса
М., где
Zкр – допускаемое значение напряжения на кручение для стальных валов, Zкр= 130 кг/см2
см
2.2.3 Диаметр вала с учетом шпонки, определяется dв
dв= 3,2 см = 0,032 м
2.2.4 Концевой диаметр втулки колеса
dвт=(1,25 – 1,45) · dв мм
dвт=(1,35 ·0,032) = 0,0432 м
2.2.5 Расчетная производительность колеса с учетом потерь
2.2.6 Скорость жидкости во входе сечений рабочего колеса в первом приближении определяется по формуле Руднева С. С.
м/с, где
Q´ - м3/с
η – мин-1
м/с
2.2.7 Диаметр выхода в колесо
(м)
D0=0,6192 + 0,04322 = 0,0755 м
2.2.8 Окончательная скорость выхода:
м/с
м/с
2.2.9 Радиус средней точки входной кромки лопатки:
м
м
2.2.10 Меридиальная составляющая абсолютной скорости потока до стечения сечения лопасти принимается равной скорости на выходе:
С´м= с0=3,82 м/с
2.2.11 Ширина водного сечения канала в меридиальном сечении определяется из уравнения неразрывности:
м
2.1.12 Коэффициент смещения сечения телом лопаток:
К1= 1,1 – 1,15
Принимаем К = 1,15
2.2.13 Меридиальная составляющая абсолютной скорости с учетом стеснения сечения телом лопаток:
Сm1 = K1 · C´m м/с
Сm1 = 1,15 · 3,82 = 4,39 м/с
2.2.14 Переносная скорость при входе в кольцо:
м/с
U1 = 3,14 · 0,0,3 = 9,42 м/с
2.2.15 Входной угол без ударного поступления потока на лопатку определяется по формуле:
Β1.0 = 27°
2.2.16 Угол атаки (угол между направляющим β1.0 лопатки и относительной скоростью W1).
Для уменьшения гидравлических сил, потерь в области рабочего колеса и увеличении его кавитационных свойств при проектировании насосов принимают угол атаки, равный:
δ = 3 : 8°
Принимаем: δ = 7°
2.2.17 δ и β1.0 определяем входной угол наклона лопатки.
β1 =β1.0 + δ
β1 =27+7=34°
2.2.18 Геометрический напор колеса
дж/кг
дж/кг
2.2.19 окружная скорость в первом приближении
м/с, где
Кu2 – коэффициент отношения окружной составляющей абсолютной скорости при выходе потока из колеса U2. Принимаем Кu2 = 0,5
м/с
2.2.20 Наружный радиус колеса в первом приближении
м
м
2.2.21 Меридиальная составляющая абсолютной скорости потока на выходе из колеса без учета стеснения:
м/с
м/с
2.2.22 Коэффициент стеснения потока сечения лопатки на выходе из колеса:
К2 = (1,05 – 1,1) = 1,1
2.2.23 Отношение относительных скоростей входа и выхода принимаются равными.
W1/W2 = 1,15
2.24 Угол выхода лопатки определяется по выбранному отношению: ,
относительно скоростей по формуле:
Для современных насосов β2 = 17 - 30°
2.2.25 Наиболее выгодное число лопаток
Z = 6 лопаток
2.2.26 Коэффициент ψ определяется по формуле:
Ψ = (0,55 – 0,65) + 0,6· sinβ2
Коэффициент в скобках зависит от шероховатости проточной части рабочего колеса.
Ψ = (0,55 – 0,65) + 0,6· sin26° = 0,808
2.2.27 Поправочный коэффициент, учитывающий конечное число лопаток, определяется по формуле:
2.2.28 Расчетный напор
Н∞(1+Р)·НТ Дж/кг
Н∞(1+0,41)·357,1=528,89 Дж/кг
2.2.29 Меридиальная составляющая скорости потока c учетом стеснения телом лопатки на выходе:
м/с
м/с
2.2.30 наружный радиус рабочего колеса
м
2.2.31 Наружный диаметр рабочего колеса
D2 = 2 · R2 м
D2 = 2 · 0,077 = 0,154 м
2.2.32 Ширина канала рабочего колеса на выходе
м
2.2.33 Толщина лопатки рабочего колеса выбирается в интервале δ = 2 – 9. Выбираем δ = 5 mm.
2.2.34 Проверка предварительно выбранных коэффициентов стеснения сечения телом лопаток
2.2.35 Относительная скорость на входе
м/с
2.2.36 Относительная скорость на выходе
м/с
2.3 Профилирование канала рабочего колеса в меридиальном сечении
Применяется линейный закон изменения С´m1 до значения С´m2 в функции от радиуса R.
Rвх=0,03 м = R1
Rвых=0,077 м = R6
Cmвх= 3,82 м/с
Cmвых= 3,06 м/с
Закон изменения ширины канала Bi в зависимости от Сmi имеет вид:
Изменение Cmi от Ri и Bi от Сmi и Ri как Сmi = f(R1) и Bi = f(Cmi; R1)
Можно изменить в табличной форме. (табл. 2.3.1.)
Таблица 2.3.1. Профилирование канала рабочего колеса
№ | Ri (м) | Сmi (м/с) | Вi (м) |
1 | 0,03 | 3,799 | 0,016 |
2 | 0,0394 | 3,611 | 0,0128 |
3 | 0,0448 | 3,435 | 0,0109 |
4 | 0,0582 | 3,259 | 0,0096 |
5 | 0,0676 | 3,083 | 0,0087 |
6 | 0,077 | 2,906 | 0,0081 |
0 комментариев