3.1.10 Построение ЭПЮР переменных δ и углов поворота φ необходимо начать сверху.

3.1.11 Выбираем жесткое сечение, т.е. сечение в котором δ и  достигают своих максимальных значений.

3.1.12 Расчет предельно допустимых напряжений в опасных сечениях

 

 мПа (3.13)

 мПа, (3.14)

где и - соответствующие пределы тягучести по предельным и касательным напряжениям, мПа

στ = 650 мПа

τt = 0,5στ = 377 мПа

ε – коэффициент, учитывающий влияние характеристик размеров вала на его прочность.

3.1.13 – рассчитывают коэффициент запаса статической прочности в опасных сечениях:

- от действий нормальных напряжений:

,

где σт и στ – предельно допустимое и расчетно-нормальные напряжения, мПа.

- от действия касательных напряжений:


где τг и Гτ – предельно допустимое и расчетно-касательное напряжения, мПа.

- от их совместного действия:

3.1.14 Проверяют условия статической прочности. Коэффициенты запаса статической прочности (nσ, nτ, n) должны быть не меньше допустимого значения nг, которое выбирают в зависимости от пластичности стали материала.

См. Ломеник А. А. «Центробежные и осевые насосы». Машиностроение, М-Л, 1966, стр. 32.

3.2 Пример расчета на прочность вала насоса типа НЦВ 40130

3.2.1 Определяем массу колеса по формуле 3.3.

 кг

3.2.2 Определяем вес колеса по формуле 3.2.

 Н

3.2.3 Определяем осевые силы по формуле 3.1.

 Н

3.2.4 Строим ЭПЮРЫ продольных сил N с помощью формул 3.4, 3.5, 3.6.

Сечение I-I 0 ≤ х ≤ ℓ1

Х = 0; N = 0

H

Сечение II-II 0 ≤ х ≤ ℓ2

Х = 0; N = 0,25 + Рос = 0,25 + 731,57 = 731,82 Н

х = ℓ2 = 0,005 м; N = 731,82 + g · ρg · π · d2 · ℓ2/4 = 9,81 · 7900 · 3,14 · 0,012 · 0,002/4 = 731,86

Сечение III-III 0 ≤ х ≤ ℓ3

Х=0; N = 731,86 Н

х = ℓ2 = 0,054 м

 Н

Сечение IV-IV 0 ≤ х ≤ ℓ4

Х = 0; N = 733,16 Н

х = ℓ2 = 0,094 м

 Н

3.2.5 Строим ЭПЮР нормальных напряжений с помощью формулы.

Сечение I-I 0 ≤ х ≤ ℓ1

Х = 0; δ = 0

х = ℓ1 = 0,02 м;  мПа

Сечение II-II 0 ≤ х ≤ ℓ2

Х=0;  мПа

Сечение III-III

Х=0;  мПа

х = ℓ3 мПа

Сечение IV-IV 0 ≤ х ≤ ℓ4

Х=0;  мПа

х = ℓ4 = 0,094  мПа

3.2.6 Строим ЭПЮРЫ перемещений с помощью формулы 3.8.

Сечение IV-IV 0 ≤ х ≤ ℓ4

Х=0: δIV-IV = 0,91 · 106 · 0,09/206 · 109 = 0,53 · 10-6 м

Сечение III-III 0 ≤ х ≤ ℓ3

Х=0: δIII-III = 0

х = ℓ3 = 0,054 δIII-III = 1,93 · 106 · 0,054/206 · 109 = 0,41 · 10-6 м

Сечение II-II 0 ≤ х ≤ ℓ2

Х=0: δII-II = 0

х = ℓ2 = 0,002 δII-II = 6,47 · 106 · 0,002/206 · 109 = 0,16 · 10-6 м

Сечение I-I 0 ≤ х ≤ ℓ1

Х=0: δI-I= 0

х = ℓ1 = 0,022 δI-I = 244 · 0,022/206 · 109 = 0,1 · 10-6 м

3.2.7 Абсолютное удлинение складывается из относительных по формуле:

(3.18)

δ4 = δIV-IV = 0,53 · 10-6 м

δ3 = δIV-IV + δIII-III = 0,53 · 10-6 + 0,41 · 10-6 = 0,94 · 10-6 м

δ2 = δIIII-III + δII-II = 0,94 · 10-6 + 0,16 · 10-6 = 1,1 · 10-6 м

δ1 = δIII-II + δI-I = 1,1 · 10-6 + 0,0001 · 10-6 = 1,1001 · 10-6 м

3.2.8 Строим ЭПЮРЫ крутящих моментов м с помощью формул 3.9 и 3.10.

Сечение II-II и I-I исключаются, т.к. момент преломления в сечении III-III.

Сечение III-III :

 мПа

Сечение IV-IV :  мПа

3.2.9 Строим ЭПЮРЫ углов поворота φ с помощью формул 3.11 и 3.12.

Сечение III-III : φIII-III = 19,12 · 0,044/ рад

Сечение IV-IV : φIV-IV = 19,12 · 0,09/ рад

3.2.10 Аналогично абсолютному удалению

 рад

3.2.11 Опасными сечениями являются III-III и II-II, т.к. δII =6,4 мПа δIII= 1,93 мПа τIII=9,15 мПа

3.2.12 Определяем предельно допустимые напряжения по формуле:

 мПа

 мПа

 мПа

3.2.13 Коэффициент статического запаса прочности в опасных сечениях:

- от действия нормальных сил по формуле:

 мПа

 мПа

- от действия касательных сил по формуле:

мПа

- от их совместного действия по формуле:

3.2.14 Проверка условий статической прочности определяют отношением :

Для прочих материалов:

Коэффициент запаса статической прочности (ηδτ;η) не менее допустимого ητ, следовательно вал удовлетворяет условиям статической прочности.

3.3 Проверка прочности шпоночного соединения

В зависимости от диаметра и толщины ступицы выбираем шпонку с параметрами шпона 10х6х36 ГОСТ 23860-78.

3.3.1 Направление силы стеснения:

, Н/мм2,

где ℓ - длина шпонки, ℓ = 36 мм

n – высота шпонки, n = 10 мм

b – глубина шпонки паза, b = 5 мм

t – ширина шпонки

 мПа

3.3.2 Допустимые напряжения

Условие прочности выполнено.

3.4 Расчет колеса насоса на прочность

Расчет прочности включает в себя расчет на прочность ступицы, а также расчет на прочность лопатки рабочего колеса.

3.4.1 Расчет на прочность ступицы колеса.

3.4.1.1 Усилия в контакте с передающей шпонкой определяется по формуле:

Z – число шпонок, Z = 1

b – ширина шпонки, b = 6 мм

 Н

3.4.1.2 Площадь поверхности рабочего контакта определяется по формуле:

FCm = L· b1, мм2

где L – длина шпонки, L = 28 мм

FCm = 28 · 6 =168 мм2

3.4.1.3 Напряжение сжатия в ступице колеса определяется по формуле:

мПа

 мПа

3.4.1.4 Запас прочности для ступицы колеса определяется по формуле:

,

где στ – предел текучести материала.

Для стали Ст45 στ = 290 мПа

3.5 Расчет лопатки рабочего колеса на прочность

3.5.1 Напряжение в лопасти от расчетного перепада давления напора определяется по формуле,

где - расчетный перепад давления, = 11,85

b – ширина лопатки, b = 12 мм

δ – толщина лопатки, δ = 3,5 мм

Напряжение лопасти рассчитывается по трем точкам: на входе, среднем диаметре, выходе:

 мПа

Напряжение в лопасти от расчетного перепада давлений напора во всех трех точках одинаково.


Информация о работе «Гидравлический расчет проточной части центробежного насоса НЦВС 40/30»
Раздел: Промышленность, производство
Количество знаков с пробелами: 32184
Количество таблиц: 5
Количество изображений: 0

0 комментариев


Наверх