7.      Закрыть задвижку 13 и открыть задвижку 8 и выполнить замеры перепада давления на кране 9 и вентилях 10, 11. Результаты измерений занести в таблицу 1.

8.      Далее с помощью вентиля на нагнетательном трубопроводе изменяют расход воды и выполняют все измерения для второго опыта.

Таблица 1 - Измеренные величины

Наименование величин Обозначение Размерность Значение
Расход воды по диафрагме V

м3

Потери давления

-      на прямом участке

-      на плавном расширении

-      на змеевике

-      на резком расширении

-      на резком сужении

-      на кране

-      на вентиле

-      на диафрагме

ΔРтр.

ΔРпл.р.

ΔРзм.

ΔРр.р.

ΔРр.с.

ΔРкр.

ΔРвн

ΔРд.

Па

Па

Па

Па

Па

Па

Па

Па

Обработка результатов измерения и содержание отчета

1.      На основе перепада давления на диафрагме по градуировочному графику определяют расход воды V, м3/с.

2.      По уравнению расхода V = w · S рассчитывают скорость потока на контрольных участках трубопроводной сети (для случаев сужения и расширения расчетную скорость находят по наименьшему сечению трубопровода).

3.      Определяют число Рейнольдса

Re

4.      Исходя из опытных значений потери давления на различных участках трубопровода с помощью уравнений (1) и (2) рассчитывают экспериментальные значения λ и  для обоих опытов и полученные результаты заносят в таблицу 2. Для рассматриваемого змеевика ламинарный режим при Re ≤ 9000 [1].

5.      По графику или соответствующему уравнению устанавливают величину λ при шероховатости трубы е = 0,2 мм [1].

6.      Находят величины  по данным таблиц в приложении [1]. Значения λ и  заносят в таблицу 2, в графу справочные данные.

7.      Сопоставляют справочные и экспериментальные значения коэффициентов трения и местных сопротивлений.

Отчет должен включать формулировку цели работы, схему установки, описание методики измерений и расчеты необходимых параметров.

Таблица 2 – Рассчитанные величины

Наименование

величин

Обозначение Размерность Значение Справочные данные
Скорость потока W м/с
Число Рейнольдса Re
Коэффициент трения:

-      прямой трубы

- змеевика

λ тр.

λ зм.

Коэффициент местных сопротивлений:

-      плавного расширения

-      резкого расширения

-      резкого сужения

-      крана

-      вентиля

-      диафрагмы

пл.р.

р.р.

р.с.

кр.

вн.

д.


ИЗУЧЕНИЕ ГИДРОДИНАМИКИ ТАРЕЛЬЧАТЫХ

И НАСАДОЧНЫХ КОЛОНН

 

Цель работы: Экспериментально определить гидравлическое сопротивление сухих и орошаемых контактных элементов – тарелок и насадок. Сопоставить измеренные величины с рассчитанными по эмпирическим зависимостям.

Основные определения и теория процесса

Тарельчатые и насадочные колонны являются широко распространенными аппаратами в химической и других смежных отраслях промышленности. В них осуществляется взаимодействие восходящих потоков газа или пара с жидкостью, стекающей по колонне вниз (абсорбция, ректификация).

Тарельчатые колонны работают в основном в барботажном режиме, когда пар или газ проходит через слой жидкости на тарелке в виде пузырей или струй.

Насадочные колонны работают в большинстве случаев как поверхностные аппараты, когда пар или газ взаимодействуют с жидкостью, стекающей в виде пленок по насадке.

Существует большое разнообразие контактных тарелок: колпачковые, ситчатые, клапанные, струйные и т.д. Их устройство и принцип работы описаны в [2].

Наиболее распространенной насадкой являются кольца Рашига, которые изготавливаются из керамики и металла. Кроме них используются также кольца Паля, спиральная насадка и др. [2].

Назначение тарелок и насадки в колонных аппаратах состоит в том, чтобы создать хороший контакт газа и жидкости и тем самым обеспечить эффективное протекание процессов тепло- и массообмена между взаимодействующими фазами.

Для того чтобы обеспечить перемещение газа через колонну, необходимо затратить мощность на преодоление гидравлических сопротивлений.

N = Δ P · V (1)

где Δ P – гидравлическое сопротивление колонны, Па;

V – объемный расход газа, м3/с.

Для колпачковых тарелок гидравлическое сопротивление рассчитывают как сумму трех составляющих:

 Δ Pт = Δ Pсух. + Δ Pσ + Δ Pс.т.  (2)

где Δ Pсух = – сопротивление сухой тарелки, Па;

Δ Pσ = – сопротивление связанное с преодолением сил

поверхностного натяжения жидкости, Па;

Δ Pст =  – сопротивление, оказываемое слоем

жидкости на тарелке, Па.

Здесь: ρж – плотность жидкости, кг/м3;

ρг – плотность газа, кг/м3;

 – коэффициент сопротивления колпачковой тарелки (≈ 5);

σ – поверхностное натяжение жидкости, Н/м;

m – высота прорезей колпачка, м;

b – ширина прорезей колпачка, м;

w0 = w/ψ – скорость газа в прорезях колпачка, м/с;

w = V/S – скорость газа в колонне, м/с ;

V – расход газа, м3/с;

S – площадь сечения колонны, м2;

ψ – доля сечения прорезей колпачка определяется как отношения их суммарной площади на тарелке к площади поперечного сечения колонны S, кг/м3;

К – отношение плотности пены к плотности чистой жидкости

 (К ≈ 0,5);

l –расстояние от верхнего края прорезей до сливного порога, м (l = 0,01м);

g – ускорение свободного падения, м/с2;

Δ h = (Vж /ПК) – подпор жидкости над переливным устройством, м;

Vж – объемный расход жидкости, м3/с;

П – периметр слива жидкости, м.

С увеличением скорости газа растет гидравлическое сопротивление тарелок, и при некоторых значениях W расходы энергии могут оказаться слишком большими. Однако чаще предельное значение скорости газа в тарельчатых колоннах определяется величиной брызгоуноса, который определяется как отношение количества жидкости, уносимого одним килограммом газа с нижележащей на вышележащую тарелку. Величину брызгоуноса е (кг жидкости/кг газа) для колпачковых тарелок можно определить по формуле:

е = (11,5 · 10-6/σ) · (W/НС)3,2  (3)

где НС – высота сепарационного пространства, представляющая собой расстояние от верхней кромки пены до вышележащей тарелки, м.

Допустимая величина брызгоуноса составляет 0,1 кг/кг. Если значение больше 0,1, то необходимо уменьшить скорость газа в колонне.

Максимальный расход жидкости в колонне определяется сечением переливного устройства, обеспечивающего переток жидкости с вышележащей тарелки на нижележащую. При этом допустимая скорость жидкости в переливном устройстве можно рассчитать как

, м/с (4)

Сопротивление орошаемой насадочной колонны можно рассчитать исходя из величины гидравлического сопротивления сухой насадки

Δ Pн = Δ Pсух. · [1+8,4(L/G)0,4гж) 0,23 ] (5)

Сопротивление сухой насадки зависит от высоты слоя Н и определяется как

(6)

где a – удельная поверхность насадки, м23

a = 300

ε – доля свободного объема насадки, м33

ε = 0,7

Обе эти величины зависят от вида насадки и берутся из справочных таблиц [2].

Коэффициент сопротивления λ зависит от числа Рейнольдса для газа

Reг

При Reг < 40 λг = 140/Reг

При Reг > 40 λг = 16/Reг0,2

В зависимости от скорости газа возникают различные режимы работы насадочной колонны: пленочный, подвисания, захлебывания, эмульгирования.

При достижении определенной скорости газа, называемой «точкой инверсии фаз» происходит резкое изменение в характере гидродинамической обстановки. В этот момент насадка полностью заполняется жидкостью, а газ начинает барботировать через нее в виде пузырьков и струек. Дальнейшее увеличение скорости может привести к захлебыванию колонны, при котором нарушается противоток газа и жидкости и жидкость выбрасывается из верхней части колонны. Очевидно, что рабочая скорость должна быть меньше, чем скорость захлебывания Wз, которую можно найти из уравнения:

(7)

Коэффициент А = 0,022 для процессов абсорбции, при которых жидкость взаимодействует с газами А = - 0,125 для систем пар – жидкость.

Описание установки Установка состоит из двух прозрачных колонн с внутренним диаметром 200мм и высотой 1380мм. Колонны изготовлены из царг, которые посредством резиновых трубок соединены с U-образным дифманометром.

Воздух подается в нижнюю часть колонны, а вода поступает в верхнюю.

Для определения расходов воздуха и воды имеются ротаметры, снабженные калибровочными графиками.

Тарельчатая колонна имеет 4 одноколпачковых тарелки. Расстояние между тарелками Нмт = 0,182 м. Внутренний диаметр парового патрубка

dп = 0,06м. Диаметр колпачка, dк = 0,1м, а его высота hк = 0,075м. Колпачок имеет треугольные прорези высотой 0,013м и шириной в основании также 0,015м. Число прорезей по периметру равно 19. Расстояние от нижней кромки колпачка до тарелки 0,01м. Диаметр сливного патрубка составляет 0,021м, высота его над тарелкой 0,045м.

Насадочная колонна имеет слой насадки из колец Рашига. Высоту слоев насадки необходимо измерить в опытах.

Порядок выполнения работы

Для исследования влияния скорости газа на сопротивление сухой тарелки (насадки) необходимо измерить их сопротивление при трех различных расходах газа. Затем при этих расходах газа измерить сопротивление орошаемой тарелки (насадки). Расход жидкости на орошение в этом случае остается неизменным.

Далее исследуется влияние плотности орошения на сопротивление тарелки (насадки).

Для этого при постоянной скорости газа измеряют гидравлическое сопротивление орошаемой тарелки (насадки) при трех плотностях орошения.

Измеренные данные сводят в таблицу 1.

Таблица 1 - Опытные данные по сопротивлению колонн

п/п

Расход, м3

Сопротивление, мм вод. столба Примечания
газа жидкости Сухой Орошаемой
тарелки насадки тарелки насадки

В графе «Примечания» записываются визуальные наблюдения.

Обработка результатов измерения и содержание отчета

Измеренные величины позволяют рассчитать скорость газа в колонне и плотность орошения. А это, в свою очередь, совместно со сведениями о геометрических характеристиках колонн и физико-химических свойствах газа и жидкости позволяет рассчитать гидравлические сопротивления тарелок и насадок по формулам (2 - 6). Сравнение опытных и рассчитанных величин сводится в таблицу 2.

Таблица 2 - Сравнение опытных и рассчитанных величин

п/п

Скорость газа

W, м/с

Плотность орошения

U, м32с

Сопротивление, Па (Для тарелок)
Сухой тарелки (насадки) Орошаемой тарелки (насадки)

e,

кг/кг

опыт расчет опыт расчет

Кроме того, для насадочной колонны при одной из плотностей орошения необходимо рассчитать скорость захлебывания по (7) и сравнить ее с действительной скоростью в колонне.

Отчет должен содержать схему установки, эскиз тарелки с указанием размеров и направления движения газа и жидкости, таблицы измеренных и рассчитанных величин.


ИЗУЧЕНИЕ ГИДРАВЛИКИ ВЗВЕШЕННОГО СЛОЯ

Цель работы: Экспериментально определить скорости начала псевдоожижения и уноса частиц при стесненных условиях в потоке воздуха и сопоставить их с рассчитанными значениями. Проследить условия перехода зернистого слоя из неподвижного состояния во взвешенное и в режим пневмотранспорта.

Основные определения и теория процесса

Если через неподвижный слой зернистого материала на решетке пропускать газ, постепенно увеличивая его расход, то при некоторой скорости газа, называемой скоростью псевдоожижения Wпо, слой переходит из неподвижного во взвешенное состояние. В таком слое твердые частицы интенсивно движутся и слой напоминает кипящую жидкость. Как и жидкость, он может течь, обладает вязкостью.

С увеличением скорости слой становится более рыхлым, т.е. увеличивается его порозность ε, представляющая собой долю объема, занятого ожижающим агентом

(1)

где Vсл – общий объем слоя, м3;

Vч – объем твердых частиц, м3.

Для неподвижного слоя частиц ε ≈ 0,4; для псевдоожиженного - 0,4 < ε < 1,0; для пневмотранспорта ε ≈ 1,0.

Многие процессы, например сушка, протекают гораздо быстрее в псевдоожиженных слоях по сравнению с неподвижными.

При достижении второй критической скорости, называемой скоростью уноса, частицы приобретают однонаправленное движение и уносятся потоком газа из аппарата. На практике это используют для пневмотранспорта сыпучего материала.

Скорость псевдоожижения определяется из равенства гидравлического сопротивления слоя весу частиц, приходящихся на единицу площади сечения аппарата

Δ P = G/S (2)

Значения порозности слоя ε, скорости газа W и диаметра частиц d находятся из зависимости Ly = f(Ar, ε) [1]..

 Критерий Лященко и Архимеда определяются по формулам:

Ly=Re3/Ar=w3ρ2г / μгчг)g  (3)


(4)

Верхняя граница псевдоожиженного состояния (ε ≈1) соответствует скорости свободного витания одиночных частиц.

Очевидно, что при скорости потока большей, чем скорость витания начнется унос частиц из слоя.

В инженерной практике важно определить обе критические скорости. Для этого можно, в частности, воспользоваться формулами Тодеса:

(5)

(6)

Значение Wпо и Wун находят из критических значений критерия Рейнольдса.

Описание установки Схема установки представлена на рис. 1. Она включает в себя две прозрачные колонки 3 и 8 диаметром 5см. В колонках установлены сетки, на некоторых из них помещен зернистый материал.

В нижние части колонок из общего коллектора поступает сжатый воздух, расход которого измеряется ротаметрами 4 и 7 и регулируется вентилями 5 и 6.

К каждой из колонок присоединено по два дифманометра, заполненные водой. Дифманометры 2 и 9 измеряют гидравлическое сопротивление сеток, а манометры 1 и 10 гидравлические сопротивления сеток и слоев зернистого материала

Порядок выполнения работы, обработка результатов измерения и содержание отчета

Работу проводят на одной из двух колонок.

9.      Осторожно открывают вентиль 5 (6), увеличивают расход воздуха в колонке через 2 – 5 делений ротаметра 4 (7), наблюдают при этом за состоянием слоя, одновременно записывая показания дифманометров.

10.   Определяют расход газа соответствующий скорости начала псевдоожижения.

11.   Полученные данные заносят в табл. 1 и строят график зависимости гидравлического сопротивления слоя от скорости W.

12.   Зная скорость псевдоожижения рассчитывают критическое значение критерия Лященко Lyпо и из графика [1].. определяют значение критерия Архимеда при ε = 0,4. Из критерия Ar находят диаметр частиц.

13.   Режимы псевдоожижения и начало уноса устанавливают визуально, повторяя опыт 3 – 4 раза и одновременно измеряя перепад давления в слое и расход воздуха.

14.   После усреднения расхода воздуха, соответствующего началу уноса частиц, по уравнению расхода определяют экспериментальное значение скорости уноса. Полученное таким образом значение (Wун)э сравнивают с рассчитанным из критерия Рейнольдса по уравнению (6). Полученные данные заносят в табл. 2.

Таблица 1.

Показание ротаметра

Расход

воздуха

V, м3

Скорость

воздуха

W, м/с

Сопротивление слоя Сопротивление сетки Примечание
мм. водян. столба Па мм. водян. столба Па

В графе «Примечание» записываются визуальные наблюдения.

Таблица 2.

Расход воздуха V, м3

Скорость

псевдоожижения Wпо, м/с

Скорость уноса Wун, м/с

Примечание
Эксперимент. Рассчитан.

Отчет о работе должен содержать цель и задачи работы, схему установки, пример расчета скоростей Wпо, Wун, таблицы и графики экспериментальных и рассчитанных величин.


ИСПЫТАНИЕ РАМНОГО ФИЛЬТР-ПРЕССА

Цель работы: Определить константы в уравнении фильтрования и производительность рамного фильтр-пресса.

Основные определения и теория процесса

Фильтрованием называют процесс разделения суспензий при помощи пористой перегородки, пропускающей жидкость (фильтрат) и задерживающей твердую фазу. В начальный момент фильтрования твердые частицы проникают в поры фильтровальной перегородки, затем накапливаются на ней и образуют слой осадка, который играет роль основной фильтрующей среды. Движущей силой процесса является разность давлений над слоем осадка и под фильтровальной перегородкой. По способу создания движущей силы фильтры делятся на вакуум-фильтры и фильтры, работающие под избыточным давлением, а по режиму работы – на фильтры периодического и непрерывного действия. Устройство фильтров и принцип их работы описаны в [ 2].

Интенсивность данного процесса и производительность фильтрующей аппаратуры определяются скоростью фильтрования, т.е. количеством фильтрата, прошедшего через 1м поверхности фильтрующей перегородки за единицу времени. Для несжимаемых осадков ее можно определить по уравнению:

( 1 )

где W - скорость фильтрования, м3 /(м 2с);

dV - объем фильтрата, м3;

F - поверхность фильтрования, м2;

∆Р - перепад давлений, Па;

μ - вязкость фильтрата, Па·с;

Roc , Rфп - сопротивление слоя осадка и фильтровальной перегород- ки, соответственно, м-1;

dτ - время фильтрования, с.

В процессе фильтрования изменяется сопротивление слоя осадка, если предположить, что структура осадка однородна, то сопротивление слоя осадка можно выразить следующей зависимостью [ 2 ].

( 2 )

где ro- удельное сопротивление осадка, м-2;

xo- относительная объемная доля твердой фазы в суспензии,

м3 осадка / м3 жидкости.

Удельное сопротивление осадка зависит от структуры осадка, формы и размера частиц и определяется экспериментально. Для несжимаемых осадков оно постоянно. Сопротивление фильтровальной перегородки Rфп принимается постоянным.

Подставив значение Roc в уравнение (1) , получим уравнение фильтрования в дифференциальной форме

( 3 )

Если фильтрование происходит при постоянной разности давлений (∆P=const), то интегрирование уравнения ( 3 ) в пределах от 0 до V и от 0 до τ дает:

( 4 )

Разделив правую и левую части уравнения ( 4 ) на F2 будем иметь

 ( 5 )

и введя обозначения

;  ;  ( 6 )

получим уравнение, которое выражает зависимость объема фильтрата, проходящего через единицу поверхности фильтровальной перегородки от продолжительности фильтрования

( 7 )

Чтобы определить константы С и К графическим способом уравнение ( 7 ) следует представить в виде: (после дифференцирования уравнения 7):

( 8 )

Рисунок 1. – Схема установки

1 – бак для суспензии

 6 – рамный фильтр-пресс

9, 13, 14 – манометры

2 – пневматическая мешалка

7 – зажимное устройство

16 – мерный сосуд

3 – насос

5, 8, 10, 11,12, 15 – вентили запорные

4 – ванна


В координатах  это уравнение выражается прямой линией, наклоненной к горизонтальной оси под углом α , тангенс которого равен 2/К, а отрезок, отсекаемый на оси ординат С/К (рис. 1) Найденные значения К и С позволяют определить константы фильтрации ro и Rфп на основе соотношений ( 6 ).

Описание установки

Основным элементом установки является плиточно-рамный фильтр пресс, который состоит из чередующихся рам и плит рис. 1 Размеры рам в свете 315х315. Плиты и рамы опираются ручками на брусья. Между плитами и рамами помещаются тканиевые фильтровальные перегородки. Общая поверхность фильтрования зависит от числа фильтровальных перегородок и может быть изменена от опыта к опыту. Плиты и рамы прижимаются к неподвижной плите при помощи прижимного устройства.

Суспензия готовится в баке емкостью 0,75 м3 с пневматическим перемешиванием. Сжатый воздух для перемешивания подается из воздухопровода.

Суспензия в фильтр – пресс подается диафрагменным насосом. Она поступает в нижний канал фильтр – пресса и из него через отверстия в нижних стенках рам в камеры, образованные плитами и рамами. Фильтрат проходит через ткань, поднимается по желобам плит в верхний сборный канал и удаляется наружу. Осадок остается на перегородках внутри камер. Его промывают водой, сушат воздухом и выгружают.

Порядок выполнения работы и обработка результатов измерения

1.      Приготовить суспензию из полистирола и воды.

2.      Подать сжатый воздух в бак (1) для перемешивания суспензии.

3.      Подготовить фильтр – пресс к работе:

-                     покрыть плиты с двух сторон фильтровальной тканью так, чтобы отверстия в рамах и плитах совпадали с отверстиями в ткани;

-                     плиты и рамы сдвинуть к опорной плите и зажать зажимным устройством.


Информация о работе «Гидромеханические процессы химической и пищевой технологии»
Раздел: Промышленность, производство
Количество знаков с пробелами: 31024
Количество таблиц: 8
Количество изображений: 2

Похожие работы

Скачать
202559
1
0

... Сахаров и крахмала на разных стадиях обработки продуктов. Изменения таких полисахаридов, как клетчатка, гемицеллюлозы и пектиновые вещества, содержащихся в растительных продуктах. Изменения сахаров В процессе технологической обработки пищевых продуктов сахара могут подвергаться кислотному и ферментативному гидролизу, а также глубоким изменениям, связанным с образованием окрашенных веществ ( ...

Скачать
24040
5
2

... устойчивому турбулентному режиму движения теплоносителей и в большинстве случаев лежат в пределах 0,1…2 м/с для жидкостей и 2…20 кг/(м2с) – для газов.   2. Расчет теплообменника   Задание на проектирование. Спроектировать и рассчитать кожухотрубный теплообменник для подогрева воды по следующим данным: Трубы стальные, давление греющего насыщенного водяного пара в межтрубном ...

Скачать
26480
0
4

... 2.  Производство азотной кислоты и аммиака 3.  Получение хлора и соляной кислоты 5) Производство специальных материалов (взрывчатые вещества и пороха) 6) Наноматериалы и нанотехнологии Все вышеперечисленные технологии химических производств на практике могут быть реализованы только в конкретном оборудовании. Поэтому основной задачей специалистов в области химической инженерии (механик хим. ...

Скачать
181032
8
0

... , причем преобладают кислые. Количество отдельных групп аминокислот в белках зависит от зоотехнических факторов, что и обуславливает их физико-химический состав. Молоко по содержанию незаменимых аминокислот является полноценным. Состав незаменимых АК в некоторых белках % Аминокислоты Идеальный белок Казеин Сывороточные белки молока Белок яйца Белок пшеницы Белок ...

0 комментариев


Наверх