1. Вимоги до характеристик вимірювача шуму.
1.1. Аналіз характеристик типових вимірювачів шуму
Вимірювальна апаратура
Шум машин може вимірюватися різними приладами. З декількох послідовно з'єднаних приладів утвориться так званий вимірювальний тракт. Залежно від умов проведення вимірів, способу реєстрації одержуваних результатів і інших обставин кількість приладів, що входять у вимірювальний тракт, може змінюватися в широких межах. У найбільш загальному виді застосовувані на практиці тракти для виміру шуму представлені на рис. 1.1. Блок-схема універсального вимірювального тракту
Рис. 1.1
Прилади, зазначені в блок-схемі, дозволяють вимірювати рівні звукового тиску шуму; рівні звуку; спостерігати на екрані осцилограми значення звукового тиску шуму; реєструвати зміни рівня звукового тиску в часі; досліджувати частотні спектри шуму та реєструвати спектрограми; досліджувати статистичні характеристики шумів (якщо в числі інших приладів є відповідний статистичний аналізатор) і інші характеристики. Застосування додаткових методів обробки результатів вимірів дає можливість також визначати рівні звукової потужності джерела шуму й характеристики направленості його випромінювання.
Зображені на рис. 1.1. перемикачі показують різні варіанти з'єднання приладів. Найчастіше ці з'єднання здійснюються екранованими кабелями зі штекерами на кінцях. Іноді два або три прилади поєднуються в загальному корпусі, що спрощує користування ними, оскільки при цьому кабельна комутація заміняється внутрішніми постійними лініями, позначеними перемикачами. Наприклад, часто поєднуються шумомір і частотний аналізатор; існують прилади, у яких, крім названих блоків, входить самописний реєстратор рівня або осцилограф.
У більшості випадків при визначенні шумових характеристик можна обмежитися шумоміром і частотним аналізатором, іноді цей комплект доповнюється самописцем. В деяких випадках шум може бути попередньо записаний на носій інформації та надалі, вже в лабораторних умовах, проаналізований на стаціонарній апаратурі.
Шумоміри призначені для виміру рівнів звуку, що відповідають стандартним характеристикам. Частотні характеристики вимірювального тракту й шумоміра наведені в табл. 1.1.
Рекомендується використовувати характеристику А при вимірі рівня звуку й лінійну характеристику для спектрального аналізу. Допускається використання характеристики C замість лінійної. Крім того, шумомір, зазвичай, застосовується, як вхідний блок у більшості акустичних вимірювальних трактів і призначається для перетворення акустичного сигналу в електричний і посилення. По-принципу дії шумомір являє собою вольтметр із частотними характеристиками, що перемикаються, і ступінчатою регульованою чутливістю. Шумомір повинен працювати в широкому динамічному діапазоні рівнів приблизно від 20—25 до 130—140 дБ. При вимірах шумів з найнижчими рівнями використовується максимальне посилення вимірювального тракту. Щоб уникнути перевантаження підсилювача при вимірах шумів середньої інтенсивності напруга, посилена першим каскадом, послабляється атенюатором у певне число раз. При вимірах інтенсивних шумів напруга, що знімається з мікрофона або мікрофонного трансформатора, виявляється досить великою, щоб перевантажити навіть перший каскад підсилювача. Тому між мікрофоном і першим каскадом також включений атенюатор. Звичайно обидва атенюатора регулюються однією ручкою, однак є шумоміри, у яких кожен атенюатор має свою ручку (фірма «Брюель і Кьєр»). Атенюатори змінюють посилення шумоміра щаблями по 10 або 20 дБ.
Таблиця 1.1
Відносні частотні характеристики вимірювальних трактів і шумомірів
Частота, гц | Відносна частотна характеристика, дБ | Допуски на нерівномірність характеристики, дБ (4) | ||
(1) | А (2) | C (3) | ||
63 | —26,2 | —0,8 | ±4,0 | |
80 | —22,5 | —0,5 | ±3,5 | |
100 | —19,1 | —0,3 | ±3,5 | |
125 | —16,1 | —0,2 | ±3,0 | |
160 | —13,4 | —0,1 | ±3,0 | |
200 | —10,9 | 0 | ±3,0 | |
250 | — 8,6 | 0 | ±3,0 | |
315 | —6,6 | 0 | ±3,0 | |
400 | — 4,8 | 0 | ±3,0 | |
500 | — 3,2 | 0 | ±3,0 | |
630 | — 1,9 | 0 | ±3,0 | |
800 | — 0,8 | 0 | ±2,5 | |
1000 | 0 | 0 | ±2,0 | |
1250 | + 0,6 | 0 | ±2,5 | |
| ||||
1600 | + 1,0 | —0,1 | ±3,0 | |
2000 | + 1,2 | —0,2 | ±3,0 | |
2500 | + 1,3 | —0,3 | + 4,0 | |
3150 | + 1,2 | —0,5 | +5,0 | —3,5 |
4000 | + 1,0 | —0,8 | + 5,5 | —4,0 |
5000 | + 0,5 | —1,3 | +6,0 | —4,5 |
6300 | — 0,1 | —2,0 | +6,0 | —5,0 |
8000 | — 1,1 | —3,0 | ±6,0 |
Для виміру рівнів звуку в тракт шумоміра між каскадами підсилювача вмикаються коригувальні ланцюги RС, зазвичай керовані спеціальним перемикачем. Далі сигнал надходить на підсилювач. З його виходу посилена напруга подається на випрямляч стрілочного приладу й на вихідні гнізда, до яких можуть підключатися частотні аналізатори, самописці та інші прилади. Призначення випрямляча - продетектувати змінну електричну напругу для можливості виміру її магнітоелектричним стрілочним приладом. Шкала приладу градуюється в децибелах. Вимірювальний рівень звукового тиску або рівень звуку визначається алгебраїчною сумою показань атенюатора та стрілочного приладу.
Коефіцієнт підсилення шумоміра повинен бути постійним. Звичайно в шумомірі є пристрій для калібрування підсилення електричного тракту. Рекомендується спосіб калібрування, що включає весь тракт, починаючи з мікрофона.
... должен быть снижен на 3…5 дБ против допустимого по нормам: ,дБ (2.5.13) где Д – необходимая величина звукоизоляции, дБ LА – уровень от источника, дБ; Lg – допустимый уровень шума по нормам, дБ. Рис. 2.5.3. Параметры звукоизоляции Теперь, применив формулу (2.5.13), знаем на сколько дБ необходимо понизить звуковое давление. Исходя из полученного ...
... – 3 0,1; 0,2; 0,4; 1; 2; 4 N8974A 0,01 – 6.7 0,1; 0,2; 0,4; 1; 2; 4 N8975A 0,01 – 26.5 0,1; 0,2; 0,4; 1; 2; 4 Таблица 4.3 - Технические особенности ИКШ серии NFА Структурная схема измерителя коэффициента шума N8973A представлена на рисунке 4.4. Рисунок 4.4 - Структурная схема ИКШ N8973A В преобразователе частот (блок радиоприемного тракта) спектр входного сигнала сначала ...
... Аорта 30-60 Большие артерии 20-40 Вены 10-20 Малые артерии, артериолы 1-10 Венулы, малые вены 0.1-1 Капилляры 0.05-0.07 Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами: сложностью получения приемлемых параметров УЗ преобразователя, выполненного на основе пьезокерамики, для работы на ...
... возможную реализацию точностных характеристик измерительного блока во времени. Функции М ( t ) и s ( t ) можно представить в виде: М ( t ) = А х t ; s ( t ), = sо + В х t, где sо - дисперсия погрешности измерения отношения сигнал/шум в момент начала эксплуатации. Выбираем: sо = 0,5 Коэффициенты А и В выбираем по интенсивности внезапных отказов l å из соотношений ...
0 комментариев