1 Анализ технического задания
Техническое задание на дипломное проектирование приведено в приложении А.
Из принципиальных схем плат непосредственно следует, что они представляют собой относительно простые устройства, так что особых сложностей при разработке этих плат не представляется.
Параметры измерительных приборов приведены в таблице 1.1.
Таблица 1.1- Перечень приборов, входящих в измерительную стойку
Наименование прибора | Кол-во | Предел измерения; погрешность | Примечание |
Генератор ВЧ сигнала Г4-116 | 1 | 4-300 Мгц; ± 1% 0,5В-0,5мкВ; ± 1% | |
Универсальный вольтметр В7-18 | 1 | 0,01-1000В; ± 0,3% | |
Векторный вольтметр ФК2-12 | 1 | 0,3-1000мВ;±10%(10-300МГц) 0-3600; ±2,50 | |
Источник питания Б5-49 | 4 | 0,1-99,9 В; ± 0,1 В 1,0-999 мА; ±1 мА |
Из характеристик измерительной аппаратуры и блоков питания следует, что диапазон регулировки тока и напряжения в цепях базы и коллектора, а также точность измерений, заданная в техническом задании вполне реализуемы.
Устройство предназначено для работы в стационарных лабораторных условиях, поэтому особые меры для повышения устойчивости к внешним воздействиям не применяются, так же отсутствуют жёсткие требования по массе и габаритам, что позволяет не проводить дополнительные мероприятия
по их уменьшению. Условия эксплуатации согласно первой группе ГОСТ 16019-78 предусматривают работу устройства в стационарной аппаратуре в отапливаемом помещении. Для аппаратуры данной группы определены основные дестабилизирующие факторы согласно [2]:
- воздействие минимальной пониженной температуры 233 К;
- воздействие максимальной пониженной температуры 278 К;
- воздействие минимальной повышенной температуры 313 К;
- - воздействие максимальной повышенной температуры 328 К;
- воздействие повышенной влажности 80% при температуре 298 К;
- воздействие пониженного атмосферного давления 61 кПа при температуре 263 К;
- прочность при синусоидальных вибрациях с частотой 20 Гц и ускорением 19,6 м/с2 в течение времени непрерывного воздействия более 0,5 ч.
При анализе приведённых факторов в соответствии с областью применения устройства, можно сделать вывод о возможности не предпринимать специальных мер по защите от дестабилизирующих влияний этих воздействий.
Корпус устройства выполнен из двустороннего фольгированного стеклотекстолита СФ-2-35-1,5 ГОСТ 10316-78, один слой которого служит экраном от внешних помех.
Так как устройство должно отвечать технологии единичного производства, то в нем должны быть использованы серийные и доступные радиоэлементы, а так же традиционные конструкционные материалы. Жёстких требований к ним в связи с нежёсткими условиями эксплуатации не представляется. Требования к эргономике обычные и связаны только с удобством эксплуатации блока. Требования к надёжности тоже являются обычными для такого вида аппаратуры.
Из изложенного выше следует, что реализация конструкции не связана с какими-либо существенными трудностями.
2 Математические модели радиоэлектронных элементов 2.1 Общие положения
Формальную модель многополюсного радиоэлемента (ФММР) представим в виде многополюсника (МП) который содержит множество N внешних полюсов для его электропитания по переменному и постоянному току. В качестве переменных, которые определяют процессы в ФММР, примем входные токи полюсов i1 i2-..in разности потенциалов и дополнительные переменные Xi,X2-..Xq , - потенциал базового полюса, относительно которого отсчитывается напряжение, - потенциалы остальных полюсов (рисунок 2.1).
В общем случае процессы в формальном многополюснике (ФМП) можно представить нелинейными дифференциальными уравнениями вида:
(2.1)
(2.2)
(2.3)
где i≠1;
t - время;
I, U - вектор-функции определяемые токами и напряжениями на полюсах;
fi и fp ~ некоторые функции, в общем случае нелинейные;
X - вектор-функция времени с составляющими xi,x2,...Xq , которые связаны с различными физическими величинами в зависимости от принципов построения модели.
Кроме множества N полюсов, структуру ФММР представляет подмножество А полюсов для электропитания по переменному току в процессе преобразования сигналов и под множество S полюсов для электропитания МП по постоянному току для создания рабочего режима.
Связь между множествами A, S и N определяет выражение
A<N, S<N. (2.4)
Пусть а- размер A, a bi - его элемент при i=l,a, s-размер S, Ср его элемент при j=l,s.
В случае ФМП множество полюсов N представляет собой объединение полюсов А и S, т.е.
N=AUS. (2.5)
При этом возможны следующие отношения между A, S и N. Для пассивных устройств:
S=0, A=N. (2.6)
Для устройств постоянного тока, для которых мгновенными измерениями сигналов во времени можно пренебречь
А=0, S=N. (2.7)
Подмножества А и S совпадают (например для транзистора)
A=S=N. (2.8)
Для устройств типа операционного усилителя
AS=N. (2.9)
Полюса А и S изолированы друг от друга (некоторые интегральные схемы)
AS,N=A+S. (2.10)
Условия (2.6)-(2.10) необходимо учитывать как при конкретном применении МП, так и при организации процесса измерения его параметров.
В качестве базового узла ФММР можно выбрать любой из его полюсов и даже объединить несколько полюсов. В этом случае порядок МП понизится на число полюсов принятых в качестве базовых, и его модель принципиально упростится.
С другой стороны базовый узел может быть внешним по отношению к МП, т.е. электрически с МП не связан. В этом случае первый закон Кирхгофа для мгновенных токов, втекающих в N-полюсник, может быть записан в виде
(2.11)
А линейные устройства будут иметь особенные матрицы параметров, т.е. сумма элементов этих матриц по строкам и столбцам будет равна 0. В этой связи для описания ФММР достаточно идентифицировать N-1 строк и столбцов.
... приведен полный перечень и расчетные формулы используемых для оценки ТК РЭА количественных показателей. 3.2 Разработка информационного обеспечения системы показателей эффективной организации управленческого труда в организации и технологичности конструкции изделий и их составных частей Стандартами ЕСТПП введена система количественных оценок технологичности конструкций, охватывающая всю ...
... (кимберлиты, лампроиты) и сопровождающихся процессами брекчирования, катаклаза, милонитизации и метасоматоза. Наиболее крупные глубинные разломы, прослеживающиеся на Шангулежской площади - Присаянский глубинный разлом, отделяющий структуру Восточного Саяна от Сибирской платформы, и субпараллельный ему Очкосовский, осложняющий восточную границу Бирюсинского купола. 4.2 Ураноностность площади. В ...
... в соответствии со складывающейся ситуацией, изменение маркетинговой политики, разработка и реализация программ по увеличению продаж. 2. ПРЕДЛОЖЕНИЯ ПО ФОРМИРОВАНИЮ СИСТЕМЫ УПРАВЛЕНИЯ 2.1 Определение миссии РУПП «Витязь» Миссия РУПП «Витязь» - обеспечение потребителей высококачественной продукцией, как телевизионной и спутниковой техникой, так и медицинской техникой, а также другими ...
... ИД состоит в выполнении им, помимо основной функции, функции автоматического метрологического самоконтроля - контроля метрологической исправности. Для повышения эффективности проектирования интеллектуальных датчиков необходимо создание баз данных, касающихся: 1. физических и химических процессов в чувствительных элементах датчиков, порождающих рост опасных составляющих погрешности; 2. динамики ...
0 комментариев