Анализ технического задания

Исследование и разработка методов и технических средств и измерения для формирования статистических высококачественных моделей радиоэлементов
148486
знаков
26
таблиц
5
изображений

1 Анализ технического задания

Техническое задание на дипломное проектирование приведено в приложении А.

Из принципиальных схем плат непосредственно следует, что они представляют собой относительно простые устройства, так что особых сложностей при разработке этих плат не представляется.

Параметры измерительных приборов приведены в таблице 1.1.

Таблица 1.1- Перечень приборов, входящих в измерительную стойку

Наименование прибора Кол-во

Предел измерения;

погрешность

Примечание
Генератор ВЧ сигнала Г4-116 1

4-300 Мгц; ± 1%

0,5В-0,5мкВ; ± 1%

Универсальный вольтметр В7-18 1 0,01-1000В; ± 0,3%
Векторный вольтметр ФК2-12 1

0,3-1000мВ;±10%(10-300МГц)

0-3600; ±2,50

Источник питания Б5-49 4

0,1-99,9 В; ± 0,1 В

1,0-999 мА; ±1 мА

Из характеристик измерительной аппаратуры и блоков питания следует, что диапазон регулировки тока и напряжения в цепях базы и коллектора, а также точность измерений, заданная в техническом задании вполне реализуемы.

Устройство предназначено для работы в стационарных лабораторных условиях, поэтому особые меры для повышения устойчивости к внешним воздействиям не применяются, так же отсутствуют жёсткие требования по массе и габаритам, что позволяет не проводить дополнительные мероприятия

по их уменьшению. Условия эксплуатации согласно первой группе ГОСТ 16019-78 предусматривают работу устройства в стационарной аппаратуре в отапливаемом помещении. Для аппаратуры данной группы определены основные дестабилизирующие факторы согласно [2]:

-    воздействие минимальной пониженной температуры 233 К;

-    воздействие максимальной пониженной температуры 278 К;

-    воздействие минимальной повышенной температуры 313 К;

-    - воздействие максимальной повышенной температуры 328 К;

-    воздействие повышенной влажности 80% при температуре 298 К;

-    воздействие пониженного атмосферного давления 61 кПа при температуре 263 К;

-    прочность при синусоидальных вибрациях с частотой 20 Гц и ускорением 19,6 м/с2 в течение времени непрерывного воздействия более 0,5 ч.

При анализе приведённых факторов в соответствии с областью применения устройства, можно сделать вывод о возможности не предпринимать специальных мер по защите от дестабилизирующих влияний этих воздействий.

Корпус устройства выполнен из двустороннего фольгированного стеклотекстолита СФ-2-35-1,5 ГОСТ 10316-78, один слой которого служит экраном от внешних помех.

Так как устройство должно отвечать технологии единичного производства, то в нем должны быть использованы серийные и доступные радиоэлементы, а так же традиционные конструкционные материалы. Жёстких требований к ним в связи с нежёсткими условиями эксплуатации не представляется. Требования к эргономике обычные и связаны только с удобством эксплуатации блока. Требования к надёжности тоже являются обычными для такого вида аппаратуры.

Из изложенного выше следует, что реализация конструкции не связана с какими-либо существенными трудностями.


2 Математические модели радиоэлектронных элементов 2.1 Общие положения

Формальную модель многополюсного радиоэлемента (ФММР) представим в виде многополюсника (МП) который содержит множество N внешних полюсов для его электропитания по переменному и постоянному току. В качестве переменных, которые определяют процессы в ФММР, примем входные токи полюсов i1 i2-..in разности потенциалов  и дополнительные переменные Xi,X2-..Xq , - по­тенциал базового полюса, относительно которого отсчитывается напряжение, - потенциалы остальных полюсов (рисунок 2.1).

В общем случае процессы в формальном многополюснике (ФМП) можно представить нелинейными дифференциальными уравнениями вида:

 (2.1)

 (2.2)

 (2.3)

где i≠1;

t - время;

I, U - вектор-функции определяемые токами и напряжениями на полюсах;

fi и fp ~ некоторые функции, в общем случае нелинейные;

X - вектор-функция времени с составляющими xi,x2,...Xq , которые связаны с различными физическими величинами в зависимости от принципов построения модели.

Кроме множества N полюсов, структуру ФММР представляет подмножество А полюсов для электропитания по переменному току в процессе преобразования сигналов и под множество S полюсов для электропитания МП по постоянному току для создания рабочего режима.

Связь между множествами A, S и N определяет выражение

A<N, S<N. (2.4)

Пусть а- размер A, a bi - его элемент при i=l,a, s-размер S, Ср его элемент при j=l,s.

В случае ФМП множество полюсов N представляет собой объединение полюсов А и S, т.е.

N=AUS. (2.5)

При этом возможны следующие отношения между A, S и N. Для пассивных устройств:

S=0, A=N. (2.6)

Для устройств постоянного тока, для которых мгновенными измерениями сигналов во времени можно пренебречь

А=0, S=N. (2.7)

Подмножества А и S совпадают (например для транзистора)

A=S=N. (2.8)

Для устройств типа операционного усилителя

AS=N. (2.9)

Полюса А и S изолированы друг от друга (некоторые интегральные схемы)

AS,N=A+S. (2.10)

Условия (2.6)-(2.10) необходимо учитывать как при конкретном применении МП, так и при организации процесса измерения его параметров.

В качестве базового узла ФММР можно выбрать любой из его полюсов и даже объединить несколько полюсов. В этом случае порядок МП понизится на число полюсов принятых в качестве базовых, и его модель принципиально упростится.

С другой стороны базовый узел может быть внешним по отношению к МП, т.е. электрически с МП не связан. В этом случае первый закон Кирхгофа для мгновенных токов, втекающих в N-полюсник, может быть записан в виде

 (2.11)

А линейные устройства будут иметь особенные матрицы параметров, т.е. сумма элементов этих матриц по строкам и столбцам будет равна 0. В этой связи для описания ФММР достаточно идентифицировать N-1 строк и столбцов.


Информация о работе «Исследование и разработка методов и технических средств и измерения для формирования статистических высококачественных моделей радиоэлементов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 148486
Количество таблиц: 26
Количество изображений: 5

Похожие работы

Скачать
128462
1
16

... приведен полный перечень и расчетные формулы используемых для оценки ТК РЭА количественных показателей. 3.2 Разработка информационного обеспечения системы показателей эффективной организации управленческого труда в организации и технологичности конструкции изделий и их составных частей Стандартами ЕСТПП введена система количественных оценок технологичности конструкций, охватывающая всю ...

Скачать
95619
8
4

... (кимберлиты, лампроиты) и сопровождающихся процессами брекчирования, катаклаза, милонитизации и метасоматоза. Наиболее крупные глубинные разломы, прослеживающиеся на Шангулежской площади - Присаянский глубинный разлом, отделяющий структуру Восточного Саяна от Сибирской платформы, и субпараллельный ему Очкосовский, осложняющий восточную границу Бирюсинского купола. 4.2 Ураноностность площади. В ...

Скачать
81636
14
5

... в соответствии со складывающейся ситуацией, изменение маркетинговой политики, разработка и реализация программ по увеличению продаж. 2. ПРЕДЛОЖЕНИЯ ПО ФОРМИРОВАНИЮ СИСТЕМЫ УПРАВЛЕНИЯ 2.1 Определение миссии РУПП «Витязь»   Миссия РУПП «Витязь» - обеспечение потребителей высококачественной продукцией, как телевизионной и спутниковой техникой, так и медицинской техникой, а также другими ...

Скачать
123695
1
3

... ИД состоит в выполнении им, помимо основной функции, функции автоматического метрологического самоконтроля - контроля метрологической исправности. Для повышения эффективности проектирования интеллектуальных датчиков необходимо создание баз данных, касающихся: 1. физических и химических процессов в чувствительных элементах датчиков, порождающих рост опасных составляющих погрешности; 2. динамики ...

0 комментариев


Наверх