2.3.4. Окислительное карбонилирование алкинов в растворах комплексов палладия
В 1985 году [23] в МИТХТ О. Н. Темкиным и Г. М. Шуляковским при исследовании реакции карбалкоксилирования ацетилена в системе PdBr2 - PPh3 - HBr - н-бутанол - диметилсульфоксид были обнаружены периодические изменения скорости поглощения газовой смеси (CO и C2H2) и цвета каталитического раствора от желто - оранжевого до зелено - бурого. Колебания в условиях опыта длятся 9 часов с периодом около 30 минут; амплитуда колебаний скорости поглощения газа 0,4 моль./л*час.; амплитуда колебаний значений платинового электрода 300 мВ. Выходу системы на колебательный режим предшествует индукционный период, продолжительность которого зависит от состава катализатора и условий проведения процесса. Характер изменения скорости поглощения газа в индукционный период различный, а потенциал платинового электрода (EРt) понижается от 630 - 500 мВ до 560 - 200 мВ в зависимости от условий опыта. По истечении индукционного периода происходит резкое увеличение скорости поглощения смеси CO и C2H2, уменьшение Eрt от 560 - 250 мВ до (+50) - (-50) мВ и изменение цвета раствора. Устойчивые колебания начинаются после определенной раскачки системы, которая выражается в форме нарастающих или затухающих по величине амплитуды и частоте колебаний. При удельной скорости подачи исходного и Vуд = 1,1мин-1 (состав газ CO/C2H2 = 1) продолжительность раскачки составляет от 6 до 12 периодов, а частота колебаний уменьшается от 30 - 20 до 6 - 1,5 кол/час. Устойчивые колебания сохраняются в течение опыта. Амплитуда колебаний потенциала платинового электрода на участке устойчивых колебаний от 330 до 212 мВ.
В связи с изложенным предполагают, что окисление СО до СО2 происходит внутрисферно на диметилсульфоксидных комплексах:
X2Pd (ДМСО)2 + CO = X2Pd (ДМСО) (ДМС) + СО2
где ДМС - диметилсульфид.
Гидридные же комплексы палладия, образование которых возможно при окислительном карбалкоксилировании ацетилена по алкоголятному механизму, по-видимому, не окисляются ДМСО, а восстанавливают полиеновые олигомеры ацетилена, что приводит к нелинейной кинетике процесса и возникновению колебаний скорости реакции.
В 1994 году на кафедре ХТООС МИТХТ им. М. В. Ломоносова при исследовании окислительного карбонилирования алкинов по С-Н связи было обнаружено, что в каталитической системе PdI2-KI-МеОН процесс протекает в режиме автоколебаний [24]. Исследование реакции проводили в метаноле при следующих условиях: t = 400C, PO2 = 0,5 атм., PCO = 0,5 атм., [PdI2]0/[KI]0 = 1/40. В ходе опытов наблюдались периодические изменения значений pH и потенциала платинового электрода по отношению к хлорсеребряному электроду сравнения, а также периодическое поглощение газовой смеси (СО и О2) порциями по 1,5 – 2,0 мл.
Система в этих условиях делала 15 – 17 колебаний в течение 2,5 часов. В дальнейшем колебания затухали. Было отмечено, что экспериментальным фактам не противоречит металлоциклический механизм окислительного карбонилирования с участием комплексов Pd (I). Предполагалось, что появление в растворе соединений Pd (I) может вызываться процессом окисления СО до СО2 на PdI2. Общий механизм авторы работы [24] представляли состоящим из трех основных процессов:
1) процесс образования каталитически активной формы - Pd (I);
2) процесс карбонилирование алкина на Pd (I);
3) процесс окисления Pd (I, 0) до исходной формы Pd (II).
Каталитическая система более проста по сравнению с системой карбалкоксилирования ацетилена: в ней нет кислоты, а каталитически активный комплекс палладия на содержит лигандов. Были проведены исследования механизма реакций окислительного карбонилирования алкинов в метиловые эфиры ненасыщенных дикислот, протекающих в колебательном режиме и предложена математическая модель этого процесса. Проведено генерирование реакционной сети, включающей нелинейные стадии автокатализа образования гидрида палладия и автоингибирования процесса карбонилирования. Получено 350 гипотетических механизмов реакции; из них выявлены 4 механизма, удовлетворительно моделирующих процесс колебаний.
Необходимо было изучить более подробно колебательный процесс окислительного карбонилирования алкинов в растворах комплексов палладия и выяснить влияние различных условий на течение этого процесса, что и явилось темой данной инженерной работы.
3. Экспериментальная часть
3.1.Исходные вещества и методы их очистки
Фенилацетилен: фенилацетилен марки «ч» очищали перегонкой под вакуумом (0,1 атм.)
Оксид углерода: оксид углерода получали разложением муравьиной кислоты над концентрированной серной кислотой при 80-1000С.
Иодид лития: марки “хч”.
Иодид калия: марки “хч”.
Иодид палладия: получали из хлорида палладия марки «хч».
Бромид палладия: марки «хч».
Бромид лития: марки “хч” .
Бромид калия: марки “хч” .
Хлорид калия: марки “хч” .
Хлорид лития: марки “хч” .
Хлорид палладия: марки “хч” .
Кислород: газ марки “хч”, брали из баллона под давлением.
Метилацетилен (пропин): газ марки “хч”, брали из баллона под давлением.
Ацетон: марки “хч”.
Триэтиламин: марки “хч”.
Метанол: марки “хч”.
3.1.Методика получения монооксида углерода
Монооксид углерода получали разложением муравьиной кислоты в концентрированной серной кислоте. В круглодонную колбу, снабжённую капельной воронкой и газоотводной трубкой, наливали 100мл. серной кислоты и нагревали её до 80-1000С. Затем в разогретую серную кислоту (марки «хч») с помощью капельной воронки приливали по каплям муравьиную кислоту (марки «хч»), регулируя скорость образования монооксида углерода. Образующийся монооксид углерода пропускали через две склянки, соединённые навстречу друг другу и заполненные раствором щёлочи (КОН), для удаления из газа примеси СО2. Чистоту оксида углерода проверяли хроматографически. 98-99%-ный СО собирали и хранили в газометре.
3.1.Методика проведения экспериментов
0 комментариев