6.2 Аппаратура, материалы и реактивы

Полярограф переменного тока ППТ 1 или вектор-полярограф Ц. Л. А.

Баня водяная. Баня песчаная.

Центрифуга Ц.Л.Н.2 или другого аналогичного типа, обеспечивающая скорость вращения до 5000 мин"1.

Посуда мерная стеклянная лабораторная по ГОСТ 1770—74, ГОСТ 20292—74 вместимостью: колбы мерные 1000, 500 и 100 см3; пипетки 10, 5, 2 и 1 см3 с делениями 0,1; 0,05 и 0,01-см3; цилиндры измерительные 100, 25 и 10 см3.

Пробирки центрифужные вместимостью 10 см3.

Воронки стеклянные по ГОСТ 8613—75, типа I.

Пробирки с притертыми пробками по ГОСТ 25336—82.

Стаканы стеклянные лабораторные вместимостью 100 см3 па ГОСТ 25336—82.

Капельница стеклянная лабораторная по ГОСТ 25336—82.

Палочки стеклянные.

Кислота азотная по ГОСТ 4461—77.

Кислота серная по ГОСТ 4204—77.

Кислота соляная по ГОСТ 3118—77.

Кислота ортофосфорная по ГОСТ 6552—80.

Цинк металлический.

Свинец азотнокислый по ГОСТ 4236—77.

Водорода перекись (пергидроль) по ГОСТ 10929—76.

Вода дистиллированная по ГОСТ 6709—72.

Все реактивы должны быть квалификации х. ч.

6.3 Подготовка к анализу

6.3.1 Приготовление основного стандартного раствора азотнокислого свинца

1,600 г РЬ (N03)г растворяют в дистиллированной воде, содержащей 1 см3 концентрированной HNO:>, и доводят объем дистиллированной водой до 1 дм3. 1 см3 этого раствора содержит 1 мг РЬ2+.

6.3.2 Приготовление рабочего стандартного раствора азотнокислого свинца

Раствор готовят в день построения градуировочного графика разбавлением основного стандартного раствора 1 :1000. В мерную колбу вместимостью 100 см3 вносят 10 см3 основного стандартного раствора свинца и доводят объем до метки 0,001 н раствором HN03. 1 см3 раствора содержит 100 мкг РЬ. Затем 10 см3 рабочего раствора вносят в мерную колбу вместимостью 1 дм3 и доводят объем 0,001 и раствором HNOs до метки. 1 см3 раствора содержит 1 мкг РЬ2+.

6.3.3 Приготовление основного стандартного раствора цинка 1,000 г металлического цинка растворяют в 7 см3 НС1 (1 : 1), раствор переносят в мерную колбу вместимостью 1 дм3 и доводят дистиллированной водой до метки. 1 см3 раствора содержит 1 мг Zn2-.

6.3.4 Приготовление рабочего стандартного раствора цинкаОсновной раствор разбавляют 1: 100 в день построения градуи ровочного графика. В мерную колбу вместимостью 1 дм3 вносят

10 см; основного раствора и доводят до метки 0,001 н раствором HCI, 1 см3 раствора содержит 10 мкг Zn2f.

6.3.5 Приготовление 0,001 г раствора азотной кислоты Раствор готовят из фиксанала соответствующим разбавлением дистиллированной водой.

6.3.6 Приготовление 0,001 н раствора соляной кислоты. Раствор готовят из фиксанала соответствующим разбавлением дистиллированной водой.

6.3.7 Приготовление 1 М раствора ортофосфорной кислоты 65,4 см3 87%-ной ортофосфорной кислоты (плотностью 1,72 г/см3) вносят в мерную колбу вместимостью 1 дм3 и разбавляют объем дистиллированной водой до метки.

6.4 Проведение анализа

В среде 1 М раствора ортофосфорной кислоты потенциал полуволны свинца 0,53 В и цинка 1,13 В по отношению к насыщенному каломельному электроду.

Определению свинца мешает олово (Sn2+) в концентрации, превышающей в 1000 раз содержание свинца в исследуемой воде. Определению цинка мешает никель в концентрации, превышающей в 10 раз содержание цинка в пробе. Обычно эти концентрации олова и никеля в питьевой воде не встречаются.

Для определения отбирают 100 см3 исследуемой воды, подкис-, ленной при отборе воды (если исследуемая вода не была подкислена, ее подкисляют 0,5 см3 концентрированной НС1), помещают в химический стакан и выпаривают на водяной бане. Сухой остаток минерализуют на песчаной бане. Для этого к сухому остатку добавляют 0,5 см3 концентрированной серной кислоты и по каплям 2 см3 концентрированной азотной кислоты и выпаривают досуха. Затем добавляют 0,5 см3 перекиси водорода и 1 см3 концентрированной соляной кислоты и вновь выпаривают на водяной бане. Для удаления остаточного количества кислоты сухой остаток дважды обрабатывают дистиллированной водой (порциями примерно 10 см3) с последующим выпариванием до сухого остатка.

После такой обработки сухой остаток количественно растворяют в 10 см3 1 М раствора ортофосфорной кислоты (фона) и переносят в центрифужную пробирку. Раствор центрифугируют 2—3 мин, при скорости вращения 3000 мин, удаляют кислород продуванием азотом и полярографируют при выбранных условиях, найденных при построении градуировочного графика. По полученной высоте полярографической волны, в миллиметрах, с помощью градуировочного графика определяют концентрацию свинца и цинка, в микрограммах, в пробе.

Для построения градуировочного графика в мерные колбы вместимостью 100 см3 наливают рабочий стандартный раствор свинца с содержанием в 1 см3 раствора 1 мкг свинца и цинка с содержанием в 1 см3 раствора 10 мкг цинка в следующих количествах: 0,0; 1,0; 2,0; 4,0; 6,0; 8,0; 10 см3. Затем все колбы доливают до метки дистиллированной водой. Получают стандартную шкалу с содержанием 0,0—1,0—2,0—4,0—6,0—8,0—10 мкг РЬ2+ и 0,0—10—20 40—60—80—100 мкг Zn2+. Обрабатывают образцовые растворы так же, как исследуемую воду. По полученным данным высот полярографических воли строят градуировочный график зависимости высоты полярографической волны от концентрации в мкг РЬ2+и Zn2l\

Выявление условий полярографирования

В зависимости от периода капания ртути и количества электронов, восстанавливающихся па ртутно-капельном электроде, выбирают условия полярографирования: чувствительность, амплитуду, скорость изменения напряжения и период задержки.

Начальное напряжение для свинца — 0,4 В, для цинка — 0,9 В.

При построении градуировочного графика и исследовании проб воды необходимо контролировать период капания ртути и соблюдать одинаковые условия полярографирования.

6.5 Обработка результатов

Содержание свинца (X) мг/дм3 и цинка (Xi) мг/дм3 определяют по формуле

Х= а*1000/ V*1000

у _ а-1000 '~ К-1000 '

где а— содержание свинца или цинка, найденное по градуировочному графику, мкг; V— объем исследуемой воды, взятой для определения, см3. Допустимое расхождение между повторными определениями -10 отн. %.


Информация о работе «Методы определения содержания свинца, цинка, серебра в питьевой воде»
Раздел: Химия
Количество знаков с пробелами: 40326
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
87331
13
3

... 1 2 3 1 Очень чистая < 0,2 2 Чистая 0,2-1,0 3 Умеренно загрязненная 1,0-2,0 4 Загрязненная 2,0-4,0 5 Грязная 4,0-6,0 6 Очень грязная 6,0-10,0 7 Чрезвычайно грязная > 10 Глава 3 Определение некоторых показателей качества питьевой воды в различных районах г.Южно-Сахалинска и их сравнительный анализ 3.1 Показатели качества питьевой воды в различных районах г.Южно ...

Скачать
150806
34
0

... проб молока, молочных продуктов и подготовку их к испытаниям производят по ГОСТ 26809-86. 2а. Метод определения влаги в сливочном масле высушиванием навески при температуре (102 + 2) °С Метод применяется при возникновении разногласия в оценке качества. 2а.1. Подготовка к анализу 2а.1.1. Песок просеивают через сито с диаметром отверстий 1,5 мм, затем через сито с диаметром 1,0 мм. Берут ту ...

Скачать
78438
15
3

... илом. При этом происходит образование комплексов ионов с белком активного ила, следствием чего является, с одной стороны, накопление соединений металлов в осадках, а с другой - снижение качества очистки сточных вод, так как сорбированные металлы концентрируются в активном иле и с возвратным илом неоднократно попадают в аэротенк, где значительная часть подаваемого кислорода воздуха затрачивается не ...

Скачать
100615
13
7

... повышения чувствительности определения мышьяка методом инверсионной вольамперометрии его обычно концентрируют на золотых и золото-графитовых электродах [28]. Работа посвящена разработке методики анализа воды на содержание мышьяка методом инверсионной вольтамперометрии с использованием золото-стеклоуглеродного электрода(ЗСУЭ), полученного методом «in situ»,что удешевляет анализ. Определены условия ...

0 комментариев


Наверх