1.3 Критерій Баєса-Лапласа

Один із відомих класичних критеріїв прийняття рішень являється Критерій Байєса – Лапласа. Критерій Байєса – Лапласа враховує кожне з можливих наслідків всіх варіантів рішень:

Відповідне правило вибору можна інтерпретувати таким чином: матриця рішень [Wіj] доповнюється ще одним стовпцем, що містить математичне очікування значень кожного з рядків. Вибирається той варіант, в рядках якого коштує найбільше значення Wіj цього стовпця.

Критерій Байєса – Лапласа пред'являє до ситуації, в якій ухвалюється рішення, наступні вимоги:

ймовірність появи стану Vj відома і не залежить від часу;

ухвалене рішення теоретично допускає нескінченно велике

кількість реалізацій;

допускається деякий ризик при малих числах реалізацій.

Критерій Байєса – Лапласа може бути застосовуватись тільки в тому випадку, коли відомі ймовірності реалізації умов. [З]

Також зазначу пару слів про експоненційний метод розподілу, за яким формуємо матрицю рішень згідно завдання.

Вектори використовуються для опису функціонування систем, в яких перевищена кількість подій відбувається за відносно короткий проміжок часу, а окремі події для своєї реалізації потребують значно довших часових відтінків, наприклад час обслуговування клієнтів у банку, надходження автомобілів на заправну станцію, термін придатності електронних складових побутових пристроїв та ін.

Коли ймовірність появи події в малому інтервалі часу дуже мала і не залежить від появи інших подій, то інтервали часу між послідовними подіями розподіляються за експоненціальним законом.

Експоненціальний розподіл:

Рисунок 1 – Графік експоненціального закону розподілу

Цьому закону розподілу підлягає багато явищ, наприклад тривалість телефонних розмов, строк служби електронних деталей, час прибуття літака в аеропорт та ін. [4]


Розділ 2. Математичний опис

Приклад №1:

Розглянемо задачу ПР із 6 альтернативами із 8 можливими станами.

Задано матриці U(х,s) – станів і р(х,s) – ймовірностей, значення яких подані в таблиці 1 і таблиці 2 відповідно:

Таблиця 1 – Значення матриці U(х,s)

s1 s2 s4 s5 s6 s7 s8
х1 1 2 -2 0 4 6 7 -4
х2 0 0 -1 0 5 6 1 2
хЗ 4 1 1 2 1 0 2 З
х4 -6 7 5 5 2 2 0 З
Х5 -1 -1 0 4 2 З 4 5
х6 -2 -1 -2 2 1 0 З 4

Таблиця 2 – Значення матриці р(х,s)

s1 s2 s4 s5 s6 s7 s8
х1 0 0 0 0.5 0 0.5 0 0
х2 0 0 0 0 0.2 0 0 0.8
хЗ 0.1 0.2 0 0 0 0 0 0.7
х4 0 0 0 1 0 0 0 0
Х5 1 0 0 0 0 0 0 0
х6 0 0.4 0 0 0.6 0 0 0

Тоді за методом Байєса – Лапласа – хопт є  шукаємо множину оптимальних рішень:

Отже, хопт є {х4}.

Приклад №2:

Початковими даними для прийняття рішення служить матриця ефективностей,

,

тут  - ефективність варіанта,

в ситуации

.

Матриця ефективностей:

Таблиця 3 – Початкові дані для прийняття рішень

В випадках, коли ймовірності ситуацій відомі, належне застосування знайшов метод Байєса – Лапласа:

Область застосування методу Байєса – Лапласа:

1) ймовірність ситуацій  відомі і їх можна вважати постійними на період реалізації проекту;

2) рішення по проектуванню подібних систем приймається і реалізується часто;

З) ризик від неправильно ухваленого рішення не приводить до серйозних наслідків.

Наприклад, нехай матриця в таблиці. 1 доповнена наступною ймовірністю ситуацій

Отже, тоді

Метод Байєса – Лапласа використовується в поєднанні з іншими методами. [5]


Розділ 3. Розробка програми


Информация о работе «Критерій Байєса-Лапласа при експоненційно розподілених даних для множини оптимальних рішень»
Раздел: Математика
Количество знаков с пробелами: 18271
Количество таблиц: 2
Количество изображений: 7

0 комментариев


Наверх